1.Comparison of Anticancer Effects of Histone Deacetylase Inhibitors CG-745 and Suberoylanilide Hydroxamic Acid in Non-small Cell Lung Cancer
Hyo Jin KIM ; Ui Ri AN ; Han Jee YOON ; Hyun LIM ; Ki Eun HWANG ; Young Suk KIM ; Hak Ryul KIM
Tuberculosis and Respiratory Diseases 2025;88(2):342-352
		                        		
		                        			 Background:
		                        			Histone deacetylase (HDAC) inhibition offers potential anticancer effects across diverse cancers due to HDAC's significant role in cancer development and progression. Consequently, we demonstrated the therapeutic efficacy of the novel HDAC inhibitor, CG-745, in comparison with existing inhibitors such as suberoylanilide hydroxamic acid (SAHA) in non-small cell lung cancer (NSCLC) cells. 
		                        		
		                        			Methods:
		                        			CG-745's effect on apoptosis and reactive oxygen species (ROS)-dependent mitochondrial dysfunction was investigated using annexin V assay, MitoSoX, and Western blot in human A549 and H460 cells. Additionally, HDAC expression was analyzed through real-time polymerase chain reaction. We also evaluated the inhibitory effect of CG-745 on epithelial-mesenchymal transition (EMT) induced by transforming growth factor β1 (TGF-β1) via Western blot, scratch analysis, and matrigel invasion analysis. 
		                        		
		                        			Results:
		                        			Compared to SAHA, CG-745 inhibited cell viability and mRNA expression of HDACs such as HDAC1, HDAC2, HDAC3, and HDAC8. It also induced apoptosis, ROS, and mitochondrial dysfunction in a concentration-dependent manner. CG-745 reversed EMT triggered by TGF-β1 in A549 and H460 cells, and curtailed the migration and invasion enhanced by TGF-β1. CG-745 has demonstrably inhibited EMT and induced apoptosis in NSCLC cells. 
		                        		
		                        			Conclusion
		                        			CG-745 may represent a novel therapeutic strategy for NSCLC treatment. 
		                        		
		                        		
		                        		
		                        	
2.Validation of the Korean Version of the Huntington’s Disease Quality of Life Battery for Carers
Hee Jin CHANG ; Eungseok OH ; Won Tae YOON ; Chan Young LEE ; Kyum-Yil KWON ; Yun Su HWANG ; Chaewon SHIN ; Jee-Young LEE
Journal of Movement Disorders 2025;18(2):160-164
		                        		
		                        			 Objective:
		                        			The Huntington’s Disease Quality of Life Battery for Carers (HDQoL-C) is used to evaluate caregiver quality of life. This study aimed to develop and validate the Korean version of the HDQoL-C (K-HDQoL-C) to assess the burden on Korean caregivers of Huntington’s disease (HD) patients. 
		                        		
		                        			Methods:
		                        			A total of 19 HD caregivers (7 females, mean age 55.4±14.6 years) participated in this study. The K-HDQoL-C, a translation of the English version, consisted of demographic information, caring aspects, life satisfaction, and feelings about life. It was administered twice, 2 weeks apart. Internal consistency was evaluated using Cronbach’s α, and test-retest reliability was assessed with intraclass correlation coefficients. The relationship with the Zarit Burden Interview-12 (ZBI-12) was analyzed. 
		                        		
		                        			Results:
		                        			The internal consistencies of the K-HDQoL-C were 0.771 (part 2), 0.938 (part 3), and 0.891 (part 4). The test-retest reliability ranged from 0.908 to 0.936. Part 3 was negatively correlated with the ZBI-12, and part 4 was positively correlated with the ZBI-12 (r=-0.780, 0.923; p<0.001). 
		                        		
		                        			Conclusion
		                        			The K-HDQoL-C effectively evaluates the challenges faced by HD caregivers, particularly in terms of care aspects and life satisfaction. 
		                        		
		                        		
		                        		
		                        	
3.Comparison of tissue-based and plasma-based testing for EGFR mutation in non–small cell lung cancer patients
Yoon Kyung KANG ; Dong Hoon SHIN ; Joon Young PARK ; Chung Su HWANG ; Hyun Jung LEE ; Jung Hee LEE ; Jee Yeon KIM ; JooYoung NA
Journal of Pathology and Translational Medicine 2025;59(1):60-67
		                        		
		                        			 Background:
		                        			Epidermal growth factor receptor (EGFR) gene mutation testing is crucial for the administration of tyrosine kinase inhibitors to treat non–small cell lung cancer. In addition to traditional tissue-based tests, liquid biopsies using plasma are increasingly utilized, particularly for detecting T790M mutations. This study compared tissue- and plasma-based EGFR testing methods. 
		                        		
		                        			Methods:
		                        			A total of 248 patients were tested for EGFR mutations using tissue and plasma samples from 2018 to 2023 at Pusan National University Yangsan Hospital. Tissue tests were performed using PANAmutyper, and plasma tests were performed using the Cobas EGFR Mutation Test v2. 
		                        		
		                        			Results:
		                        			All 248 patients underwent tissue-based EGFR testing, and 245 (98.8%) showed positive results. Of the 408 plasma tests, 237 (58.1%) were positive. For the T790M mutation, tissue biopsies were performed 87 times in 69 patients, and 30 positive cases (38.6%) were detected. Plasma testing for the T790M mutation was conducted 333 times in 207 patients, yielding 62 positive results (18.6%). Of these, 57 (27.5%) were confirmed to have the mutation via plasma testing. Combined tissue and plasma tests for the T790M mutation were positive in nine patients (13.4%), while 17 (25.4%) were positive in tissue only and 12 (17.9%) in plasma only. This mutation was not detected in 28 patients (43.3%). 
		                        		
		                        			Conclusions
		                        			Although the tissue- and plasma-based tests showed a sensitivity of 37.3% and 32.8%, respectively, combined testing increased the detection rate to 56.7%. Thus, neither test demonstrated superiority, rather, they were complementary. 
		                        		
		                        		
		                        		
		                        	
4.Neuroinflammation in Adaptive Immunodeficient Mice with Colitis-like Symptoms
Sung Hee PARK ; Junghwa KANG ; Ji-Young LEE ; Jeong Seon YOON ; Sung Hwan HWANG ; Ji Young LEE ; Deepak Prasad GUPTA ; Il Hyun BAEK ; Ki Jun HAN ; Gyun Jee SONG
Experimental Neurobiology 2025;34(1):34-47
		                        		
		                        			
		                        			 Emerging evidence suggests that systemic inflammation may play a critical role in neurological disorders. Recent studies have shown the connection between inflammatory bowel diseases (IBD) and neurological disorders, revealing a bidirectional relationship through the gut-brain axis.Immunotherapies, such as Treg cells infusion, have been proposed for IBD. However, the role of adaptive immune cells in IBD-induced neuroinflammation remains unclear. In this study, we established an animal model for IBD in mice with severe combined immune-deficient (SCID), an adaptive immune deficiency, to investigate the role of adaptive immune cells in IBD-induced neuroinflammation. Mice were fed 1%, 3%, or 5% dextran sulfate sodium (DSS) for 5 days. We measured body weight, colon length, disease activity index (DAI), and crypt damage. Pro-inflammatory cytokines were measured in the colon, while microglial morphology, neuronal count, and inflammatory cytokines were analyzed in the brain. In the 3% DSS group, colitis symptoms appeared at day 7, with reduced colon length and increased crypt damage showing colitis-like symptoms. By day 21, colon length and crypt damage persisted, while DAI showed recovery. Although colonic inflammation peaked at day 7, no significant increase in inflammatory cytokines or microglial hyperactivation was observed in the brain. By day 21, neuroinflammation was detected, albeit with a slight delay, in the absence of adaptive immune cells. The colitis-induced neuroinflammation model provides insights into the fundamental immune mechanisms of the gut-brain axis and may contribute to developing immune cell therapies for IBD-induced neuroinflammation. 
		                        		
		                        		
		                        		
		                        	
5.Comparison of Anticancer Effects of Histone Deacetylase Inhibitors CG-745 and Suberoylanilide Hydroxamic Acid in Non-small Cell Lung Cancer
Hyo Jin KIM ; Ui Ri AN ; Han Jee YOON ; Hyun LIM ; Ki Eun HWANG ; Young Suk KIM ; Hak Ryul KIM
Tuberculosis and Respiratory Diseases 2025;88(2):342-352
		                        		
		                        			 Background:
		                        			Histone deacetylase (HDAC) inhibition offers potential anticancer effects across diverse cancers due to HDAC's significant role in cancer development and progression. Consequently, we demonstrated the therapeutic efficacy of the novel HDAC inhibitor, CG-745, in comparison with existing inhibitors such as suberoylanilide hydroxamic acid (SAHA) in non-small cell lung cancer (NSCLC) cells. 
		                        		
		                        			Methods:
		                        			CG-745's effect on apoptosis and reactive oxygen species (ROS)-dependent mitochondrial dysfunction was investigated using annexin V assay, MitoSoX, and Western blot in human A549 and H460 cells. Additionally, HDAC expression was analyzed through real-time polymerase chain reaction. We also evaluated the inhibitory effect of CG-745 on epithelial-mesenchymal transition (EMT) induced by transforming growth factor β1 (TGF-β1) via Western blot, scratch analysis, and matrigel invasion analysis. 
		                        		
		                        			Results:
		                        			Compared to SAHA, CG-745 inhibited cell viability and mRNA expression of HDACs such as HDAC1, HDAC2, HDAC3, and HDAC8. It also induced apoptosis, ROS, and mitochondrial dysfunction in a concentration-dependent manner. CG-745 reversed EMT triggered by TGF-β1 in A549 and H460 cells, and curtailed the migration and invasion enhanced by TGF-β1. CG-745 has demonstrably inhibited EMT and induced apoptosis in NSCLC cells. 
		                        		
		                        			Conclusion
		                        			CG-745 may represent a novel therapeutic strategy for NSCLC treatment. 
		                        		
		                        		
		                        		
		                        	
6.Comparison of Anticancer Effects of Histone Deacetylase Inhibitors CG-745 and Suberoylanilide Hydroxamic Acid in Non-small Cell Lung Cancer
Hyo Jin KIM ; Ui Ri AN ; Han Jee YOON ; Hyun LIM ; Ki Eun HWANG ; Young Suk KIM ; Hak Ryul KIM
Tuberculosis and Respiratory Diseases 2025;88(2):342-352
		                        		
		                        			 Background:
		                        			Histone deacetylase (HDAC) inhibition offers potential anticancer effects across diverse cancers due to HDAC's significant role in cancer development and progression. Consequently, we demonstrated the therapeutic efficacy of the novel HDAC inhibitor, CG-745, in comparison with existing inhibitors such as suberoylanilide hydroxamic acid (SAHA) in non-small cell lung cancer (NSCLC) cells. 
		                        		
		                        			Methods:
		                        			CG-745's effect on apoptosis and reactive oxygen species (ROS)-dependent mitochondrial dysfunction was investigated using annexin V assay, MitoSoX, and Western blot in human A549 and H460 cells. Additionally, HDAC expression was analyzed through real-time polymerase chain reaction. We also evaluated the inhibitory effect of CG-745 on epithelial-mesenchymal transition (EMT) induced by transforming growth factor β1 (TGF-β1) via Western blot, scratch analysis, and matrigel invasion analysis. 
		                        		
		                        			Results:
		                        			Compared to SAHA, CG-745 inhibited cell viability and mRNA expression of HDACs such as HDAC1, HDAC2, HDAC3, and HDAC8. It also induced apoptosis, ROS, and mitochondrial dysfunction in a concentration-dependent manner. CG-745 reversed EMT triggered by TGF-β1 in A549 and H460 cells, and curtailed the migration and invasion enhanced by TGF-β1. CG-745 has demonstrably inhibited EMT and induced apoptosis in NSCLC cells. 
		                        		
		                        			Conclusion
		                        			CG-745 may represent a novel therapeutic strategy for NSCLC treatment. 
		                        		
		                        		
		                        		
		                        	
7.Neuroinflammation in Adaptive Immunodeficient Mice with Colitis-like Symptoms
Sung Hee PARK ; Junghwa KANG ; Ji-Young LEE ; Jeong Seon YOON ; Sung Hwan HWANG ; Ji Young LEE ; Deepak Prasad GUPTA ; Il Hyun BAEK ; Ki Jun HAN ; Gyun Jee SONG
Experimental Neurobiology 2025;34(1):34-47
		                        		
		                        			
		                        			 Emerging evidence suggests that systemic inflammation may play a critical role in neurological disorders. Recent studies have shown the connection between inflammatory bowel diseases (IBD) and neurological disorders, revealing a bidirectional relationship through the gut-brain axis.Immunotherapies, such as Treg cells infusion, have been proposed for IBD. However, the role of adaptive immune cells in IBD-induced neuroinflammation remains unclear. In this study, we established an animal model for IBD in mice with severe combined immune-deficient (SCID), an adaptive immune deficiency, to investigate the role of adaptive immune cells in IBD-induced neuroinflammation. Mice were fed 1%, 3%, or 5% dextran sulfate sodium (DSS) for 5 days. We measured body weight, colon length, disease activity index (DAI), and crypt damage. Pro-inflammatory cytokines were measured in the colon, while microglial morphology, neuronal count, and inflammatory cytokines were analyzed in the brain. In the 3% DSS group, colitis symptoms appeared at day 7, with reduced colon length and increased crypt damage showing colitis-like symptoms. By day 21, colon length and crypt damage persisted, while DAI showed recovery. Although colonic inflammation peaked at day 7, no significant increase in inflammatory cytokines or microglial hyperactivation was observed in the brain. By day 21, neuroinflammation was detected, albeit with a slight delay, in the absence of adaptive immune cells. The colitis-induced neuroinflammation model provides insights into the fundamental immune mechanisms of the gut-brain axis and may contribute to developing immune cell therapies for IBD-induced neuroinflammation. 
		                        		
		                        		
		                        		
		                        	
8.Neuroinflammation in Adaptive Immunodeficient Mice with Colitis-like Symptoms
Sung Hee PARK ; Junghwa KANG ; Ji-Young LEE ; Jeong Seon YOON ; Sung Hwan HWANG ; Ji Young LEE ; Deepak Prasad GUPTA ; Il Hyun BAEK ; Ki Jun HAN ; Gyun Jee SONG
Experimental Neurobiology 2025;34(1):34-47
		                        		
		                        			
		                        			 Emerging evidence suggests that systemic inflammation may play a critical role in neurological disorders. Recent studies have shown the connection between inflammatory bowel diseases (IBD) and neurological disorders, revealing a bidirectional relationship through the gut-brain axis.Immunotherapies, such as Treg cells infusion, have been proposed for IBD. However, the role of adaptive immune cells in IBD-induced neuroinflammation remains unclear. In this study, we established an animal model for IBD in mice with severe combined immune-deficient (SCID), an adaptive immune deficiency, to investigate the role of adaptive immune cells in IBD-induced neuroinflammation. Mice were fed 1%, 3%, or 5% dextran sulfate sodium (DSS) for 5 days. We measured body weight, colon length, disease activity index (DAI), and crypt damage. Pro-inflammatory cytokines were measured in the colon, while microglial morphology, neuronal count, and inflammatory cytokines were analyzed in the brain. In the 3% DSS group, colitis symptoms appeared at day 7, with reduced colon length and increased crypt damage showing colitis-like symptoms. By day 21, colon length and crypt damage persisted, while DAI showed recovery. Although colonic inflammation peaked at day 7, no significant increase in inflammatory cytokines or microglial hyperactivation was observed in the brain. By day 21, neuroinflammation was detected, albeit with a slight delay, in the absence of adaptive immune cells. The colitis-induced neuroinflammation model provides insights into the fundamental immune mechanisms of the gut-brain axis and may contribute to developing immune cell therapies for IBD-induced neuroinflammation. 
		                        		
		                        		
		                        		
		                        	
9.Validation of the Korean Version of the Huntington’s Disease Quality of Life Battery for Carers
Hee Jin CHANG ; Eungseok OH ; Won Tae YOON ; Chan Young LEE ; Kyum-Yil KWON ; Yun Su HWANG ; Chaewon SHIN ; Jee-Young LEE
Journal of Movement Disorders 2025;18(2):160-164
		                        		
		                        			 Objective:
		                        			The Huntington’s Disease Quality of Life Battery for Carers (HDQoL-C) is used to evaluate caregiver quality of life. This study aimed to develop and validate the Korean version of the HDQoL-C (K-HDQoL-C) to assess the burden on Korean caregivers of Huntington’s disease (HD) patients. 
		                        		
		                        			Methods:
		                        			A total of 19 HD caregivers (7 females, mean age 55.4±14.6 years) participated in this study. The K-HDQoL-C, a translation of the English version, consisted of demographic information, caring aspects, life satisfaction, and feelings about life. It was administered twice, 2 weeks apart. Internal consistency was evaluated using Cronbach’s α, and test-retest reliability was assessed with intraclass correlation coefficients. The relationship with the Zarit Burden Interview-12 (ZBI-12) was analyzed. 
		                        		
		                        			Results:
		                        			The internal consistencies of the K-HDQoL-C were 0.771 (part 2), 0.938 (part 3), and 0.891 (part 4). The test-retest reliability ranged from 0.908 to 0.936. Part 3 was negatively correlated with the ZBI-12, and part 4 was positively correlated with the ZBI-12 (r=-0.780, 0.923; p<0.001). 
		                        		
		                        			Conclusion
		                        			The K-HDQoL-C effectively evaluates the challenges faced by HD caregivers, particularly in terms of care aspects and life satisfaction. 
		                        		
		                        		
		                        		
		                        	
10.Comparison of tissue-based and plasma-based testing for EGFR mutation in non–small cell lung cancer patients
Yoon Kyung KANG ; Dong Hoon SHIN ; Joon Young PARK ; Chung Su HWANG ; Hyun Jung LEE ; Jung Hee LEE ; Jee Yeon KIM ; JooYoung NA
Journal of Pathology and Translational Medicine 2025;59(1):60-67
		                        		
		                        			 Background:
		                        			Epidermal growth factor receptor (EGFR) gene mutation testing is crucial for the administration of tyrosine kinase inhibitors to treat non–small cell lung cancer. In addition to traditional tissue-based tests, liquid biopsies using plasma are increasingly utilized, particularly for detecting T790M mutations. This study compared tissue- and plasma-based EGFR testing methods. 
		                        		
		                        			Methods:
		                        			A total of 248 patients were tested for EGFR mutations using tissue and plasma samples from 2018 to 2023 at Pusan National University Yangsan Hospital. Tissue tests were performed using PANAmutyper, and plasma tests were performed using the Cobas EGFR Mutation Test v2. 
		                        		
		                        			Results:
		                        			All 248 patients underwent tissue-based EGFR testing, and 245 (98.8%) showed positive results. Of the 408 plasma tests, 237 (58.1%) were positive. For the T790M mutation, tissue biopsies were performed 87 times in 69 patients, and 30 positive cases (38.6%) were detected. Plasma testing for the T790M mutation was conducted 333 times in 207 patients, yielding 62 positive results (18.6%). Of these, 57 (27.5%) were confirmed to have the mutation via plasma testing. Combined tissue and plasma tests for the T790M mutation were positive in nine patients (13.4%), while 17 (25.4%) were positive in tissue only and 12 (17.9%) in plasma only. This mutation was not detected in 28 patients (43.3%). 
		                        		
		                        			Conclusions
		                        			Although the tissue- and plasma-based tests showed a sensitivity of 37.3% and 32.8%, respectively, combined testing increased the detection rate to 56.7%. Thus, neither test demonstrated superiority, rather, they were complementary. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail