1.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
2.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
3.Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing
Min-Ju KIM ; Hee-Sung HWANG ; Jee Hoon CHOI ; Eun-Seon YOO ; Mi-Im JANG ; Juhee LEE ; Seung Min OH
Environmental Analysis Health and Toxicology 2024;39(3):e2024024-
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
4.Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing
Min-Ju KIM ; Hee-Sung HWANG ; Jee Hoon CHOI ; Eun-Seon YOO ; Mi-Im JANG ; Juhee LEE ; Seung Min OH
Environmental Analysis Health and Toxicology 2024;39(3):e2024024-
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
5.Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing
Min-Ju KIM ; Hee-Sung HWANG ; Jee Hoon CHOI ; Eun-Seon YOO ; Mi-Im JANG ; Juhee LEE ; Seung Min OH
Environmental Analysis Health and Toxicology 2024;39(3):e2024024-
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
6.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
7.Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing
Min-Ju KIM ; Hee-Sung HWANG ; Jee Hoon CHOI ; Eun-Seon YOO ; Mi-Im JANG ; Juhee LEE ; Seung Min OH
Environmental Analysis Health and Toxicology 2024;39(3):e2024024-
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
8.Pan-Nox inhibitor treatment improves renal function in aging murine diabetic kidneys
Jeong Hoon PARK ; Sung Gi YOON ; Jung Yeon GHEE ; Ji Ae YOO ; Jin Joo CHA ; Young Sun KANG ; Sang Youb HAN ; Yun Jae SEOL ; Jee Young HAN ; Dae Ryong CHA
Kidney Research and Clinical Practice 2024;43(6):763-773
Aging is a risk factor for development of chronic kidney disease and diabetes mellitus with commonly shared features of chronic inflammation and increased oxidative stress. Here, we investigated the effect of pan-Nox-inhibitor, APX-115, on renal function in aging diabetic mice. Methods: Diabetes was induced by intraperitoneal injection of streptozotocin at 50 mg/kg/day for 5 days in 52-week-old C57BL/6J mice. APX-115 was administered by oral gavage at a dose of 60 mg/kg/day for 12 weeks in nondiabetic and diabetic aging mice. Results: APX-115 significantly improved insulin resistance in diabetic aging mice. Urinary level of 8-isoprostane was significantly increased in diabetic aging mice than nondiabetic aging mice, and APX-115 treatment reduced 8-isoprostane level. Urinary albumin and nephrin excretion were significantly higher in diabetic aging mice than nondiabetic aging mice. Although APX-115 did not significantly decrease albuminuria, APX-115 markedly improved mesangial expansion, macrophage infiltration, and expression of fibrosis molecules such as transforming growth factor beta 1 and plasminogen activator inhibitor 1. Interestingly, the expression of all Nox isoforms including Nox1, Nox2, and Nox4 was significantly increased in diabetic aging kidneys, and APX-115 treatment decreased Nox1, Nox2, and Nox4 protein expression in the kidney. Furthermore, Klotho expression was significantly decreased in diabetic aging kidneys, and APX-115 restored Klotho level. Conclusion: Our results provide evidence that pan-Nox inhibition may improve systemic insulin resistance and decrease oxidative stress, inflammation, and fibrosis in aging diabetic status and may have potential protective effects on aging diabetic kidney.
9.Clinical Practice Recommendations for the Use of Next-Generation Sequencing in Patients with Solid Cancer: A Joint Report from KSMO and KSP
Miso KIM ; Hyo Sup SHIM ; Sheehyun KIM ; In Hee LEE ; Jihun KIM ; Shinkyo YOON ; Hyung-Don KIM ; Inkeun PARK ; Jae Ho JEONG ; Changhoon YOO ; Jaekyung CHEON ; In-Ho KIM ; Jieun LEE ; Sook Hee HONG ; Sehhoon PARK ; Hyun Ae JUNG ; Jin Won KIM ; Han Jo KIM ; Yongjun CHA ; Sun Min LIM ; Han Sang KIM ; Choong-kun LEE ; Jee Hung KIM ; Sang Hoon CHUN ; Jina YUN ; So Yeon PARK ; Hye Seung LEE ; Yong Mee CHO ; Soo Jeong NAM ; Kiyong NA ; Sun Och YOON ; Ahwon LEE ; Kee-Taek JANG ; Hongseok YUN ; Sungyoung LEE ; Jee Hyun KIM ; Wan-Seop KIM
Cancer Research and Treatment 2024;56(3):721-742
In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objective is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in pathological diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed decisions regarding circulating tumor DNA panel testing.
10.Brain Frailty and Outcomes of Acute Minor Ischemic Stroke With Large-Vessel Occlusion
Je-Woo PARK ; Joon-Tae KIM ; Ji Sung LEE ; Beom Joon KIM ; Joonsang YOO ; Jung Hoon HAN ; Bum Joon KIM ; Chi Kyung KIM ; Jae Guk KIM ; Sung Hyun BAIK ; Jong-Moo PARK ; Kyusik KANG ; Soo Joo LEE ; Hyungjong PARK ; Jae-Kwan CHA ; Tai Hwan PARK ; Kyungbok LEE ; Jun LEE ; Keun-Sik HONG ; Byung-Chul LEE ; Dong-Eog KIM ; Jay Chol CHOI ; Jee-Hyun KWON ; Dong-Ick SHIN ; Sung Il SOHN ; Sang-Hwa LEE ; Wi-Sun RYU ; Juneyoung LEE ; Hee-Joon BAE
Journal of Clinical Neurology 2024;20(2):175-185
Background:
and Purpose The influence of imaging features of brain frailty on outcomes were investigated in acute ischemic stroke patients with minor symptoms and large-vessel occlusion (LVO).
Methods:
This was a retrospective analysis of a prospective, multicenter, nationwide registry of consecutive patients with acute (within 24 h) minor (National Institutes of Health Stroke Scale score=0–5) ischemic stroke with anterior circulation LVO (acute minor LVO). Brain frailty was stratified according to the presence of an advanced white-matter hyperintensity (WMH) (Fazekas grade 2 or 3), silent/old brain infarct, or cerebral microbleeds. The primary outcome was a composite of stroke, myocardial infarction, and all-cause mortality within 1 year.
Results:
In total, 1,067 patients (age=67.2±13.1 years [mean±SD], 61.3% males) were analyzed. The proportions of patients according to the numbers of brain frailty burdens were as follows: no burden in 49.2%, one burden in 30.0%, two burdens in 17.3%, and three burdens in 3.5%. In the Cox proportional-hazards analysis, the presence of more brain frailty burdens was associated with a higher risk of 1-year primary outcomes, but after adjusting for clinically relevant variables there were no significant associations between burdens of brain frailty and 1-year vascular outcomes. For individual components of brain frailty, an advanced WMH was independently associated with an increased risk of 1-year primary outcomes (adjusted hazard ratio [aHR]=1.33, 95% confidence interval [CI]=1.03–1.71) and stroke (aHR=1.32, 95% CI=1.00–1.75).
Conclusions
The baseline imaging markers of brain frailty were common in acute minor ischemic stroke patients with LVO. An advanced WMH was the only frailty marker associated with an increased risk of vascular events. Further research is needed into the association between brain frailty and prognosis in patients with acute minor LVO.

Result Analysis
Print
Save
E-mail