2.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
4.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
5.Lateral view fulcrum bending radiographs predict postoperative hypokyphosis after selective thoracic fusion in adolescent idiopathic scoliosis
Victoria Yuk Ting HUI ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Asian Spine Journal 2025;19(1):102-111
Methods:
Patients with Lenke 1 AIS undergoing posterior spinal fusion were included. Standing and fulcrum bending radiographs on the coronal and sagittal planes were analyzed at preoperative, immediate, and 2-year postoperative periods. The primary outcome was postoperative hypokyphosis (T5–12 thoracic kyphosis [TK] <20°). Risk factors for postoperative hypokyphosis were identified by multivariate logistic regression, and the optimal cutoff for significant risk factors was determined by receiver operating characteristic analysis.
Results:
In total, 156 patients were included in the analysis, of which 68 (43.6%) were hypokyphotic at 2-year follow-up. Low T5–12 TK on lateral view fulcrum bending films (immediate postoperative odds ratio [OR], 0.870; 95% confidence interval [CI], 0.826–0.917; 2-year postoperative OR, 0.916; 95% CI, 0.876–0.959; p<0.001) and high convex side implant density (2-year postoperative OR, 1.749; 95% CI, 1.056–2.897; p=0.03) were significant risk factors for postoperative hypokyphosis. Other baseline demographic and surgical factors did not affect postoperative kyphosis correction. The T5–12 TK cutoff on fulcrum bending for 2-year postoperative hypokyphosis was 12.45° (area under the curve, 0.773; 95% CI, 0.661–0.820).
Conclusions
Fulcrum bending radiography is useful in assessing coronal and sagittal flexibility for preoperative planning. In patients with T5–12 kyphosis <12.5° on lateral view fulcrum bending radiographs, Ponte osteotomies or releases, or a decrease in convex side implant density should be considered to improve kyphosis restoration and reduce the risk of 2-year postoperative hypokyphosis.
6.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.
8.Lateral view fulcrum bending radiographs predict postoperative hypokyphosis after selective thoracic fusion in adolescent idiopathic scoliosis
Victoria Yuk Ting HUI ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Asian Spine Journal 2025;19(1):102-111
Methods:
Patients with Lenke 1 AIS undergoing posterior spinal fusion were included. Standing and fulcrum bending radiographs on the coronal and sagittal planes were analyzed at preoperative, immediate, and 2-year postoperative periods. The primary outcome was postoperative hypokyphosis (T5–12 thoracic kyphosis [TK] <20°). Risk factors for postoperative hypokyphosis were identified by multivariate logistic regression, and the optimal cutoff for significant risk factors was determined by receiver operating characteristic analysis.
Results:
In total, 156 patients were included in the analysis, of which 68 (43.6%) were hypokyphotic at 2-year follow-up. Low T5–12 TK on lateral view fulcrum bending films (immediate postoperative odds ratio [OR], 0.870; 95% confidence interval [CI], 0.826–0.917; 2-year postoperative OR, 0.916; 95% CI, 0.876–0.959; p<0.001) and high convex side implant density (2-year postoperative OR, 1.749; 95% CI, 1.056–2.897; p=0.03) were significant risk factors for postoperative hypokyphosis. Other baseline demographic and surgical factors did not affect postoperative kyphosis correction. The T5–12 TK cutoff on fulcrum bending for 2-year postoperative hypokyphosis was 12.45° (area under the curve, 0.773; 95% CI, 0.661–0.820).
Conclusions
Fulcrum bending radiography is useful in assessing coronal and sagittal flexibility for preoperative planning. In patients with T5–12 kyphosis <12.5° on lateral view fulcrum bending radiographs, Ponte osteotomies or releases, or a decrease in convex side implant density should be considered to improve kyphosis restoration and reduce the risk of 2-year postoperative hypokyphosis.
9.Prevalence and Risk Factors for Postoperative Neurological Complications in Spinal Deformity Surgery: A Systematic Review and Proportional Meta-Analysis
Yam Wa MAN ; Jedidiah Yui Shing LUI ; Chor Yin LAM ; Jason Pui Yin CHEUNG ; Prudence Wing Hang CHEUNG
Neurospine 2025;22(1):243-263
Objective:
To investigate the incidence of postoperative neurological complications among patients who underwent spinal deformity surgery and to determine the significant risk factors for postoperative neurological complications.
Methods:
Six databases PubMed, Web of Science, Scopus, MEDLINE, Embase, and Cochrane Library have been searched to identify observational studies from inception until January 2025. Inclusion criteria were patients aged ≥10 years with postoperative neurological complications after spinal deformity surgery. Stata/MP18.0 was used to conduct the meta-analysis in this review. The summary incidence estimates, proportion with 95% confidence intervals (CIs) and weights were pooled by the random-effects restricted maximum likelihood model.
Results:
The search strategy identified 53 articles with 40,958 patients for final review. Overall incidence of postoperative neurological complications was 7% (95% CI, 5.0%–9.0%; p < 0.001; I2 = 98.34%) in which incidence estimates for patients with adult spinal deformity and underwent 3-column spinal osteotomies were 12% (95% CI, 9%–16%; p < 0.001; I2 = 93.17%) and 18% (95% CI, 8%–31%; p < 0.001; I2 = 94.68%) respectively. Preoperative neurological deficit was the risk factor with highest overall odds ratio (OR, 2.86; 95% CI, 1.85–4.41; p = 0.01; I2 = 76.20%), followed by the presence of kyphosis (OR, 1.13; 95% CI, 0.75–1.70; p = 0.02; I2 = 81.80%) and age at surgery (OR, 1.04; 95% CI, 1.01–1.08; p = 0.04; I2 = 68.80%).
Conclusion
Preoperative neurological deficit, the presence of kyphosis and age at surgery were significant risk factors for postoperative neurological complications. Therefore, comprehensive preoperative assessment and surgical planning are crucial to minimize the risk of developing postoperative neurological complications or the deterioration of pre-existing neurologic deficits.

Result Analysis
Print
Save
E-mail