2.Recent research on tofacitinib in the treatment of pediatric rheumatic diseases.
Shi-Hai ZHOU ; Ya-Qun XIONG ; Ya CHEN
Chinese Journal of Contemporary Pediatrics 2022;24(4):447-453
Tofacitinib is a Janus kinase inhibitor and can block the Janus kinase-signal transducer and activator of transcription signal transduction pathway and reduce the production and release of a variety of cytokines. It has great potential in the treatment of various rheumatic diseases with a rapid onset of action and can reduce corticosteroid dependence and related adverse events. The therapeutic effect of tofacitinib in adult patients has been confirmed, and it has been increasingly used in pediatric patients in recent years. This article reviews the clinical application of tofacitinib in the treatment of pediatric autoimmune diseases.
Adult
;
Child
;
Humans
;
Janus Kinases/metabolism*
;
Piperidines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
;
Pyrimidines/therapeutic use*
;
Rheumatic Diseases/drug therapy*
3.Bringing the Treatment of Atopic Eczema Into a New Era with Janus Kinase Inhibitors: A Position Statement By the Persatuan Dermatologi Malaysia
Noor Zalmy Azizan ; Adawiyah Jamil ; Chang Choong Chor ; Dawn Ambrose ; Henry Foong Boon Bee ; How Kang Nien ; Rajalingam Ramalingam ; Sabeera Begum Bt Kader Ibrahim ; Sharifah Rosniza Binti Syed Nong Chek ; Tan Wooi Chiang ; Wong Hoi Ling
Malaysian Journal of Dermatology 2022;49(Dec 2022):2-11
Abstract
Atopic eczema (AE) is a complex, chronic and recurrent inflammatory pruritic skin condition that
impacts the quality of life and exerts an economic toll on patients and their families. One of the factors
contributing to AE is the immune dysregulation of the Janus kinase-signal transducers and activators
of transcription (JAK-STAT) inflammatory pathway. This has prompted the conduct of various large
clinical trial programs to evaluate the efficacy and safety of Janus kinase inhibitors (JAK-i) for AE.
The overall and significant benefit of these drugs from clinical studies resulted in regulatory approvals
for JAK-i to treat moderate-to-severe atopic eczema. The objective of this position paper was to
evaluate the safety, efficacy and role of upadacitinib, baricitinib and abrocitinib in managing AE and
update the current recommended treatment algorithm within the 2018 Malaysian Clinical Practice
Guidelines for the Management of Atopic Eczema. The Persatuan Dermatologi Malaysia recommends
that these JAK-i can be considered as an option for systemic therapy in severe AE.
Dermatitis, Atopic--therapy
;
Janus Kinase Inhibitors
4.Visceral Vein Thrombosis of Myeloproliferative Neoplasm --Review.
Xia ZHANG ; Jie YANG ; Hong-Ling HAO
Journal of Experimental Hematology 2022;30(5):1627-1630
Classical myeloproliferative neoplasm (MPN) related thrombosis mainly affects elderly patients and often involves arterial circulation, while, MPN-visceral venous thrombosis (SVT) mainly affects young women, and is closely associated with JAK2V617F mutation but not closely with CALR mutation. The pathogenesis of MPN-SVT is not only related to JAK2V617F mutation and vascular endothelial damage, but also needs further research to determine the machanism. JAK2V617F mutation is the most common in MPN-SVT clinically. Patients with non-cirrhotic SVT need to detect MPN mutation, while the detection of CALR or MPL mutation needs to be combined with clinical judgment. At present, the main treatment strategies of MPN-SVT are JAK inhibitors, supplementation of anticoagulants and treatment of portal hypertension. This article reviews the latest research progress on the epidemiology, pathogenesis, diagnosis and treatment strategies of MPN-SVT.
Aged
;
Anticoagulants
;
Female
;
Humans
;
Janus Kinase 2/genetics*
;
Janus Kinase Inhibitors
;
Mutation
;
Myeloproliferative Disorders/genetics*
;
Neoplasms
;
Thrombosis
;
Venous Thrombosis
5.Hesperetin derivative-12 (HDND-12) regulates macrophage polarization by modulating JAK2/STAT3 signaling pathway.
Ling-Na KONG ; Xiang LIN ; Cheng HUANG ; Tao-Tao MA ; Xiao-Ming MENG ; Chao-Jie HU ; Qian-Qian WANG ; Yan-Hui LIU ; Qing-Ping SHI ; Jun LI
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):122-130
Macrophages show significant heterogeneity in function and phenotype, which could shift into different populations of cells in response to exposure to various micro-environmental signals. These changes, also termed as macrophage polarization, of which play an important role in the pathogenesis of many diseases. Numerous studies have proved that Hesperidin (HDN), a traditional Chinese medicine, extracted from fruit peels of the genus citrus, play key roles in anti-inflammation, anti-tumor, anti-oxidant and so on. However, the role of HDN in macrophage polarization has never been reported. Additional, because of its poor water solubility and bioavailability. Our laboratory had synthesized many hesperidin derivatives. Among them, hesperidin derivatives-12 (HDND-12) has better water solubility and bioavailability. So, we evaluated the role of HDND-12 in macrophage polarization in the present study. The results showed that the expression of Arginase-1 (Arg-1), interleukin-10 (IL-10), transforming growth factor β (TGF-β) were up-regulated by HDND-12, whereas the expression of inducible Nitric Oxide Synthase (iNOS) was down-regulated in LPS- and IFN-γ-treated (M1) RAW264.7 cells. Moreover, the expression of p-JAK2 and p-STAT3 were significantly decreased after stimulation with HDND-12 in M1-like macrophages. More importantly, when we taken AG490 (inhibitor of JAK2/STAT3 signaling), the protein levels of iNOS were significantly reduced in AG490 stimulation group compare with control in LPS, IFN-γ and HDND-12 stimulation cells. Taken together, these findings indicated that HDND-12 could prevent polarization toward M1-like macrophages, at least in part, through modulating JAK2/STAT3 pathway.
Animals
;
Cytokines
;
genetics
;
metabolism
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation
;
drug effects
;
Hesperidin
;
chemistry
;
pharmacology
;
Inflammation
;
genetics
;
metabolism
;
Janus Kinase 2
;
antagonists & inhibitors
;
metabolism
;
Macrophages
;
drug effects
;
immunology
;
metabolism
;
Medicine, Chinese Traditional
;
Mice
;
Molecular Structure
;
Phosphorylation
;
drug effects
;
RAW 264.7 Cells
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Signal Transduction
;
drug effects
6.Effect of AG490 on JAK2/STAT3 signaling pathway in human retinoblastoma HXO-RB44 cell lines.
Bei XU ; Xiang CHEN ; Jia TAN ; Xueliang XU
Journal of Central South University(Medical Sciences) 2018;43(10):1061-1067
To investigate the role of Janus kinase (JAK) inhibitor AG490 in the anti-proliferation and cell cycle in human retinoblastoma HXO-RB44 cell lines in vitro, and to explore its effect on the expression of JAK2/signal transducer and activator of transcription 3 (STAT3).
Methods: Cells were divided into an experiment group and a control group, and the experiment group was further divided into 6 sub-groups according to different AG490 concentrations (6.25, 12.50, 25.00, 50.00 or 100.00 μmol/L). Cell proliferation in the different groups was analyzed by cell vitality determination. Cell cycle distribution and apoptosis rate were examined by flow cytometry. The protein levels of STAT3, p-STAT3 and vascular endothelial growth factor (VEGF) were detected by Western blot.
Results: After 48 h treatment with AG490, the viability of HXO-RB44 cells was reduced in a concentration-dependent manner. Compared with the control group, there was no significant difference in the experiment groups except the 6.25 μmol/L group (all P>0.05). The apoptosis rates in the experiment groups were significantly increased with increase in concentration of AG490 compared with that in the control group (all P<0.05). The cell ratio in the G1 phase in 50 or 100 μmol/L group was increased, whereas the cell ratio in the S phase was decreased. Western blot results showed that the expressions of STAT3 and p-STAT3 in the experiment groups were dramatically reduced with the increase in concentration of AG490 compared with that in the control group (all P<0.05). VEGF expression didn't obviously change in the experiment groups with AG490 concentration less than 12.5 μmol/L compared with that in the control group (both P>0.05), but there were significant differences in the other experiment groups (all P<0.05).
Conclusion: JAK inhibitor AG490 can inhibit proliferation and promote apoptosis of the retinoblastoma HXO-RB44 cells through down-regulation of JAK2/STAT3 signaling pathway.
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cell Survival
;
drug effects
;
Enzyme Inhibitors
;
pharmacology
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Janus Kinase 2
;
genetics
;
metabolism
;
Retinoblastoma
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
drug effects
;
Tyrphostins
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
metabolism
7.Current concepts in the management of rheumatoid arthritis.
The Korean Journal of Internal Medicine 2016;31(2):210-218
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by inflammation and joint destruction that causes significant morbidity and mortality. However, the combined use of methotrexate, a synthetic disease-modifying antirheumatic drug (DMARD), and biologic DMARD has revolutionized treatment of RA. Clinical remission is now realistic targets, achieved by a large proportion of RA patients, and rapid and appropriate induction of remission by intensive treatment with biological DMARD and methotrexate is prerequisite to halt joint damage and functional disabilities. However, biological DMARD is limited to intravenous or subcutaneous uses and orally available small but strong molecules have been developed. Oral administration of tofacitinib targeting the Janus kinase (JAK) is significantly effective than placebo in active patients with methotrexatenaive, inadequately responsive to methotrexate or tumor necrosis factor (TNF)-inhibitors. The efficacy was rapid and as strong as adalimumab, a TNF-inhibitor. Meanwhile, association of tofacitinib on carcinogenicity and malignancy is under debate and further investigation on post-marketing survey would be warranted. On the other hand, discontinuation of a biological DMARD without disease flare is our next goal and desirable from the standpoint of risk reduction and cost effectiveness, especially for patients with clinical remission. Recent reports indicate that more than half of early RA patients could discontinue TNF-targeted biological DMARD without clinical flare and functional impairment after obtaining clinical remission. Contrarily, for established RA, fewer patients sustained remission after the discontinuation of biological DMARD and "deep remission" at the discontinuation was a key factor to keep the treatment holiday of biological DMARD.
Administration, Oral
;
Antirheumatic Agents/*administration & dosage/adverse effects
;
Arthritis, Rheumatoid/diagnosis/*drug therapy/metabolism/physiopathology
;
Biological Products/administration & dosage
;
Disability Evaluation
;
Drug Administration Schedule
;
Humans
;
Janus Kinases/antagonists & inhibitors/metabolism
;
Molecular Targeted Therapy
;
Predictive Value of Tests
;
Protein Kinase Inhibitors/administration & dosage
;
Recovery of Function
;
Remission Induction
;
Signal Transduction/drug effects
;
Treatment Outcome
;
Tumor Necrosis Factor-alpha/antagonists & inhibitors/metabolism
8.Mechanism of sophocarpine in treating experimental colitis in mice.
Jian-mei ZHANG ; Ya-bi ZHU ; Xing DENG ; Chang-xiong WANG ; Shuang-mei LUAN ; Yue-xiang CHEN
China Journal of Chinese Materia Medica 2015;40(15):3081-3087
To study the preventive effect of sophocarpine (Soc) on dextran sulfate sodium (DSS)-induced colitis in mice, in order to analyze the influence of Soc on toll like receptor 4 (TLR4)/mitogen-activated protein kinases (MAPKs) and janus tyrosine kinase 2 signal transducer and activator of transcription 3 (JAK2/STAT3) signal pathways in mice intestinal tissues. The mice was given 2.5% DSS for 6 days to induce the acute colitis model. The Soc-treated group was intraperitoneally injected with sophocarpine 30 mg · kg(-1) · d(-1) since the day before the experiment to the end. The disease activity index (DAI) was assessed everyday, and the colonic morphology and histological damage were observed with HE staining. The mRNA expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) were detected by real-time RT-PCR. The changes in key protein kinase p38 mitogen-activated protein kinase (p38MAPK), c-Jun NH2-terminal protein kinase1/2 (JNK1/2), extracellular signal-regulated kinase1/2 (ERK1/2), JAK2, STAT3 in TLR4/MAPKs and JAK2/STAT3 signaling pathways were detected by western blot. The result showed that the model group showed statistical significance in body weight, DAI, colon length and histopathological changes compared with the normal group (P <0.05); however, the Soc-treated group showed significant improvements in the above indexes compared with the model group (P <0.05). TNF-α, IL-1β and IL-6 in the model group was significantly higher than that in the normal group (P <0.05), but lowered in the Soc-treated group to varying degrees (P <0.05). In the normal group, the expressions of TLR4 and the phosphorylation of P38, JNK1/2, JAK2, STAT3 were at low levels; in the model group, the phosphorylation of P38, JNK1/2, JAK2, STAT3 increased; the Soc-treated group showed a decrease in TLR4 expression compared with the model group, with notable declines in the phosphorylation of TLR4, P38, JNK1/2, JAK2, STAT3. These findings indicate that Soc can inhibit TLR4/MAPKs, K2/STAT3 signaling pathway activation, reduce the expression of proinflammatory cytokines TNF-α, IL-1β and IL-6 and relieve inflammatory reactions, so as to effectively prevent experimental colitis.
Alkaloids
;
pharmacology
;
therapeutic use
;
Animals
;
Colitis
;
drug therapy
;
immunology
;
pathology
;
Cytokines
;
genetics
;
Janus Kinase 2
;
antagonists & inhibitors
;
physiology
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Phosphorylation
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
physiology
;
Toll-Like Receptor 4
;
antagonists & inhibitors
;
physiology
9.Guidelines for the management of myeloproliferative neoplasms.
Chul Won CHOI ; Soo Mee BANG ; Seongsoo JANG ; Chul Won JUNG ; Hee Jin KIM ; Ho Young KIM ; Soo Jeong KIM ; Yeo Kyeoung KIM ; Jinny PARK ; Jong Ho WON
The Korean Journal of Internal Medicine 2015;30(6):771-788
Polycythemia vera, essential thrombocythemia, and primary myelofibrosis are collectively known as 'Philadelphia-negative classical myeloproliferative neoplasms (MPNs).' The discovery of new genetic aberrations such as Janus kinase 2 (JAK2) have enhanced our understanding of the pathophysiology of MPNs. Currently, the JAK2 mutation is not only a standard criterion for diagnosis but is also a new target for drug development. The JAK1/2 inhibitor, ruxolitinib, was the first JAK inhibitor approved for patients with intermediate- to high-risk myelofibrosis and its effects in improving symptoms and survival benefits were demonstrated by randomized controlled trials. In 2011, the Korean Society of Hematology MPN Working Party devised diagnostic and therapeutic guidelines for Korean MPN patients. Subsequently, other genetic mutations have been discovered and many kinds of new drugs are now under clinical investigation. In view of recent developments, we have revised the guidelines for the diagnosis and management of MPN based on published evidence and the experiences of the expert panel. Here we describe the epidemiology, new genetic mutations, and novel therapeutic options as well as diagnostic criteria and standard treatment strategies for MPN patients in Korea.
Antineoplastic Agents/*therapeutic use
;
Asian Continental Ancestry Group/genetics
;
Humans
;
Janus Kinase 2/*antagonists & inhibitors/genetics/metabolism
;
Molecular Targeted Therapy
;
Mutation
;
Myeloproliferative Disorders/diagnosis/drug therapy/enzymology/ethnology/genetics
;
Protein Kinase Inhibitors/*therapeutic use
;
Republic of Korea/epidemiology
;
Risk Factors
;
Signal Transduction/drug effects
;
Treatment Outcome
10.Efficacy and safety of tofacitinib for active rheumatoid arthritis with an inadequate response to methotrexate or disease-modifying antirheumatic drugs: a meta-analysis of randomized controlled trials.
Gwan Gyu SONG ; Sang Cheol BAE ; Young Ho LEE
The Korean Journal of Internal Medicine 2014;29(5):656-663
BACKGROUND/AIMS: The aim of this study was to assess the efficacy and safety of tofacitinib (5 and 10 mg twice daily) in patients with active rheumatoid arthritis (RA). METHODS: A systematic review of randomized controlled trials (RCTs) that examined the efficacy and safety of tofacitinib in patients with active RA was performed using the Medline, Embase, and Cochrane Controlled Trials Register databases as well as manual searches. RESULTS: Five RCTs, including three phase-II and two phase-III trials involving 1,590 patients, met the inclusion criteria. The three phase-II RCTs included 452 patients with RA (144 patients randomized to 5 mg of tofacitinib twice daily, 156 patients randomized to 10 mg of tofacitinib twice daily, and 152 patients randomized to placebo) who were included in this meta-analysis. The American College of Rheumatology 20% response rate was significantly higher in the tofacitinib 5- and 10-mg groups than in the control group (relative risk [RR], 2.445; 95% confidence interval [CI], 1.229 to 4.861; p = 0.011; and RR, 2.597; 95% CI, 1.514 to 4.455; p = 0.001, respectively). The safety outcomes did not differ between the tofacitinib 5- and 10-mg groups and placebo groups with the exception of infection in the tofacitinib 10-mg group (RR, 2.133; 95% CI, 1.268 to 3.590; p = 0.004). The results of two phase-III trials (1,123 patients) confirmed the findings in the phase-II studies. CONCLUSIONS: Tofacitinib at dosages of 5 and 10 mg twice daily was found to be effective in patients with active RA that inadequately responded to methotrexate or disease-modifying antirheumatic drugs, and showed a manageable safety profile.
Antirheumatic Agents/administration & dosage/adverse effects/*therapeutic use
;
Arthritis, Rheumatoid/*drug therapy
;
Clinical Trials, Phase II as Topic
;
Clinical Trials, Phase III as Topic
;
Humans
;
Janus Kinases/antagonists & inhibitors
;
Methotrexate/therapeutic use
;
Piperidines/administration & dosage/adverse effects/*therapeutic use
;
Protein Kinase Inhibitors/administration & dosage/adverse effects/therapeutic use
;
Pyrimidines/administration & dosage/adverse effects/*therapeutic use
;
Pyrroles/administration & dosage/adverse effects/*therapeutic use
;
Randomized Controlled Trials as Topic
;
Treatment Outcome


Result Analysis
Print
Save
E-mail