1.c-Jun N-terminal kinase signaling pathway in acetaminophen-induced liver injury.
Wenshang CHEN ; Jijin ZHU ; Shilai LI
Chinese Critical Care Medicine 2023;35(11):1223-1228
Acetaminophen (APAP) is the most common antipyretic, analgesic and anti-inflammatory drug, but its overdose often leads to acute liver injury, even acute liver failure, and death in some severe cases. At present, there is still a lack of specific treatments. The c-Jun N-terminal kinase (JNK) signal pathway is one of the potential therapeutic targets identified in recent years in overdose APAP-induced acute liver injury. This article reviews the JNK signaling pathway of APAP in liver metabolism, the activation of JNK signaling pathway and the amplification of oxidative stress, other pathways or cellular processes related to JNK signaling pathway, and the possible challenges of drugs targeting JNK, so as to provide direction and feasibility analysis for further research and clinical application of JNK signaling pathway targets in APAP hepatotoxicity, and to provide reference for searching for other targets.
Animals
;
Mice
;
Acetaminophen/adverse effects*
;
Chemical and Drug Induced Liver Injury
;
Chemical and Drug Induced Liver Injury, Chronic/metabolism*
;
JNK Mitogen-Activated Protein Kinases/metabolism*
;
Liver
;
Mice, Inbred C57BL
;
Signal Transduction
2.Mechanism of paeoniflorin inhibiting apoptosis of hippocampal neurons of rats induced by lead acetate.
Wei Wei YAN ; Guo Hui LI ; Jia Jun ZHAO ; Yang Min JIA ; Yi LOU ; Xiao Yu GAN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):170-176
Objective: To investigate the effect and underlying mechanism of paeoniflorin on hippocampal neuron apoptosis induced by lead acetate. Methods: In September 2020, primary hippocampal neuronal cells were isolated and cultured from fetal rats, and identified using cellular immunofluorescent. MTT assay was used to measure the cell viability to determine the concentration and time of lead acetate-induced hippocampal neuron apoptosis. MTT was also used to evaluate the effect of paeoniflorin concentration on the apoptosis of hippocampal neurons induced by lead acetate. According to the results, different concentrations of paeoniflorin were selected to intervene hippocampal neuron cells, after 24 h, lead acetate was added to the cells, meanwhile, blank and model groups were set up, the content of reactive oxygen species (ROS) , superoxide dismutase (SOD) , lactate dehydrogenase (LDH) , malondialdehyde (MDA) and Caspase-3 were measured. Extracellular signal regulated kinase (ERK) , phosphorylated ERK (p-ERK) , p38 mitogen -activated protein kinases (p38MAPK) , phosphorylated p38MAPK (p-p38MAPK) , c-Jun N-terminal kinase (JNK) and phosphorylated JNK (p-JNK) protein expression in hippocampal neuronal cells were determined by Western blotting. Results: The isolated and cultured hippocampal neurons were identified by immunofluorescence chemical staining and then treated with lead acetate, MTT results showed that lead acetate had the best toxicity effect when treated for 24 h at a concentration of 25 μmol/L. Paeoniflorin showed no cytotoxic effect on hippocampal neuronal cells when the concentrations below 80 μmol/L. Compared with the model group, the activity of hippocampal neuronal cells was significantly increased after treating with 20, 40 or 80 μmol/L paeoniflorin (P<0.05) . Compared with the blank group, the ROS activity, LDH release level, MDA content and caspase-3 content were significantly increased (P<0.01) , and the SOD activity was significantly decreased (P< 0.01) in the hippocampal neuronal cells of the model group. Compared with the model group, the ROS activity, LDH release level, MDA content and caspase-3 content were obviously decreased (P<0.05) , SOD activity was significantly increased (P <0.01) after hippocampal neuronal cells were treated with 40 or 80 μmol/L paeoniflorin. Relative to the model group, the ratio of p-ERK/ERK were significantly up-regulated (P<0.01) , while the ratios of p-p38MAPK/p38MAPK and p-JNK/JNK were significantly down-regulated after hippocampal neuronal cells were treated with 40 or 80 μmol/L paeoniflorin (P<0.05) . Conclusion: Paeoniflorin may down-regulate the expression of p-p38MAPK and p-JNK protein, up-regulate the expression of p-ERK protein, and inhibit the apoptosis of hippocampal neurons induced by lead acetate through the MAPK signaling pathway.
Acetates/pharmacology*
;
Animals
;
Apoptosis
;
Caspase 3/metabolism*
;
Extracellular Signal-Regulated MAP Kinases/metabolism*
;
Glucosides
;
Hippocampus/metabolism*
;
JNK Mitogen-Activated Protein Kinases/pharmacology*
;
Lead
;
Monoterpenes
;
Neurons/metabolism*
;
Rats
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
3.Ca mobilization and signaling pathways induced by rRgpB in human gingival fibroblast.
Kexin LU ; Yanmin WU ; Shenglai LI ; Diya ZHANG
Journal of Zhejiang University. Medical sciences 2021;50(2):171-178
To assess the () recombinant gingivalis gingipain R2 (rRgpB)-induced Ca mobilization in human gingival fibroblast (HGF) mediated by protease-activated receptor (PAR) and its downstream signal transduction pathways. : Flow cytometry was used to detect the expression of PAR in HGF. The proliferation of HGF was measured by CCK-8. The dynamic changes of intracellular Ca concentration in HGF induced by rRgpB and the blocking effect of PAR-1 antagonist were observed by laser confocal microscopy. Western blot was performed to determine the phosphorylation levels of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) 1/2, p38 mitogen-activated protein kinase (p38 MAPK) and p65 in HGF. : PAR-1 and PAR-3 were expressed in HGF, and the rRgpB could promote the proliferation of HGF. rRgpB caused a transient increase in [Ca], which could be completely suppressed by vorapaxar, a PAR-1 antagonist. The phosphorylation levels of JNK, ERK1/2 and p65 were significantly up-regulated after the induction of rRgpB for and (all <0.05), which was completely inhibited by vorapaxar. However, the phosphorylation level of p38 MAPK had no significant change after rRgpB stimulation. : rRgpB causes an increase in [Ca] in HGF mediated by PAR-1. JNK, ERK1/2 and nuclear factor-κB may be involved in intracellular signal transduction after PAR-1 activation.
Fibroblasts
;
Humans
;
JNK Mitogen-Activated Protein Kinases/metabolism*
;
MAP Kinase Signaling System
;
Phosphorylation
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/metabolism*
4.Effects of MD2 gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
Zhong-Min LIN ; Guo-Rong CHEN ; Quan-Bo ZHANG ; Fang WANG ; Lan-Ting XIANG ; Qiong-Jie CAO
Chinese Journal of Applied Physiology 2019;35(3):273-278
OBJECTIVE:
To investigate the effects of myeloid differentiation-2 (MD2) gene silencing on high glucose-induced proliferation inhibition, apoptosis and inflammation in rat cardiomyocytes.
METHODS:
The immortalized rat cardiomyocyte cell line H9C2 were transfected with MD2 small interfering RNA (si-MD2) and negative control for 24 h, then stimulated with high glucose (HG) for 48 h. RT-qPCR was performed to detect the mRNA levels of MD2 and inflammatory factors TNF-α, IL-1β and IL-6. MTS and flow cytometry were used to evaluate cell proliferation, cell cycle and apoptosis rate. Western blot was used to detect protein expression levels and phosphorylation levels.
RESULTS:
The mRNA and protein levels of MD2 in H9C2 cells were dramatically decreased after transfected with si-MD2 (P<0.01). After stimulation of high glucose, the mRNA levels of inflammatory factors, the cells in G0/G1 phase , the cell apoptosis rate and the protein level of cleaved Caspase-3 were significantly increased, while the cell proliferation ability was decreased (P<0.01). MD2 gene silencing antagonized the effects of high glucose on cell proliferation, cell cycle, cell apoptosis and the mRNA levels of TNF-α, IL-1β , IL-6(P<0.05). Western blot analysis showed that the phosphorylation levels of extracellular signal-regulated kinase(ERK1/2), P38 mitogen-activated protein kinase(P38 MAPK) and C-Jun N-terminal kinase(JNK) protein were increased significantly in H9C2 cells treated with high glucose, which could be reversed by silencing of MD2 (P<0.01).
CONCLUSION
This study demonstrates that MD2 gene silencing reverses high glucose-induced myocardial inflammation, apoptosis and proliferation inhibition via the mechanisms involving suppression of ERK, P38 MAPK, JNK signaling pathway.
Animals
;
Apoptosis
;
Cell Proliferation
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Gene Silencing
;
Glucose
;
Inflammation
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Lymphocyte Antigen 96
;
genetics
;
Myocytes, Cardiac
;
cytology
;
Rats
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
5.MAPK signaling pathway and erectile dysfunction.
Si-Xiang CHEN ; Fan ZHAO ; Xiao-Jun HUANG
National Journal of Andrology 2018;24(5):442-446
The MAPK signaling pathway plays a key role in the differentiation, proliferation and apoptosis of cells, and its family members mainly include extracellular signal-regulated kinase (ERK), stress-activated protein kinase (JNK), and p38 mitogen-activated protein kinase (p38MAPK). Recent studies have shown that the ERK, JNK and p38MAPK signaling pathways are closely associated with the development and progression of erectile dysfunction (ED). This review focuses on the correlation between the MAPK signaling pathway and ED.
Apoptosis
;
Cell Differentiation
;
Cell Proliferation
;
Erectile Dysfunction
;
etiology
;
metabolism
;
Humans
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
MAP Kinase Signaling System
;
Male
;
Mitogen-Activated Protein Kinases
;
metabolism
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases
;
metabolism
6.Role of c-Jun N-terminal kinase-mediated FOXO3a nuclear translocation in neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage.
De-Yuan LI ; Jin-Lin WU ; Li-Li LUO ; Li-Na QIAO ; Zhong-Qiang LIU ; Guo-Yan LU ; Yang WANG
Chinese Journal of Contemporary Pediatrics 2017;19(4):458-462
OBJECTIVETo explore the mechanisms of neuroprotective effects of c-Jun N-terminal kinase (JNK)/FOXO3a transcription factor signaling pathway inhibition on hypoxic-ischemic neuronal apoptosis in neonatal rats with hypoxic-ischemic brain damage (HIBD).
METHODSSixty-four 7-day-old Sprague-Dawley rats were divided into four groups: hypoxia-ischemia (HI), sham-operated, JNK specific inhibitor AS601245-treated, and DMSO vehicle. Rats' cerebral cortexes were collected at 24 hours after HI. Western blot was used to detect the protein expression of JNK, p-JNK, FOXO3a, nuclear and cytoplasmic FOXO3a, Bim, and CC3. TUNEL staining was used to detect the apoptotic cells.
RESULTSCompared with the sham-operated group, p-JNK protein increased (P<0.01), nuclear protein of FOXO3a increased (P<0.01), cytoplasmic protein decreased (P<0.01), and pro-apoptotic proteins Bim and CC3 increased 24 hours after HI (P<0.01). Compared with the HI and DMSO vehicle groups, p-JNK protein was reduced (P<0.01), nuclear protein of FOXO3a was also reduced (P<0.01), cytoplasmic protein increased (P<0.01), and Bim and CC3 proteins decreased (P<0.01) in the AS601245-treated group 24 hours after HI. TUNEL positive cells were reduced in the AS601245-treated rats compared with the HI and DMSO vehicle groups 24 hours after HI (P<0.01).
CONCLUSIONSJNK activity increases in the neonatal rat brain with HI damage. JNK activity inhibition can inhibit FOXO3a translocation from cytoplasm to nucleus and downregulate the levels of pro-apoptotic proteins Bim and CC3, leading to the reduction of neuronal apoptosis.
Active Transport, Cell Nucleus ; Animals ; Animals, Newborn ; Apoptosis ; Cell Nucleus ; metabolism ; Female ; Forkhead Box Protein O3 ; metabolism ; Hypoxia-Ischemia, Brain ; pathology ; JNK Mitogen-Activated Protein Kinases ; physiology ; Male ; Neurons ; pathology ; Rats ; Rats, Sprague-Dawley
7.Expressions of JNK and p-JNK in advanced prostate cancer and their clinical implications.
Peng ZHANG ; Jian HAN ; Lei ZHENG ; Ke-Nan WANG ; Lian-Ming FAN ; Hua-Dong XIE ; Shu-Ren WANG ; Tao JIANG
National Journal of Andrology 2017;23(4):309-314
Objective:
To investigate the expressions of JNK and p-JNK in advanced prostate cancer (PCa) and benign prostatic hyperplasia (BPH) and their implications.
METHODS:
Using immunohistochemistry, we detected the expressions of JNK and p-JNK proteins in 40 cases of paraffin wax-embedded PCa and 21 cases of BPH tissues and analyzed their relationships with advanced PCa and BPH as well as with the pathologic features of advanced PCa.
RESULTS:
Statistically significant differences were not found in the positive expression rate of the JNK protein between BPH and PCa (42.86% vs 52.50%, P>0.05), non-metastatic and metastatic PCa (53.85% vs 51.85%, P >0.05), Gleason ≤7 and Gleason >7 (58.82% vs 47.82%, P >0.05), PSA ≤20 μg/L and PSA >20 μg/L (57.14% vs 51.52%, P >0.05), or survival >5 yr and survival ≤5 yr (60.00% vs 45.00%, P >0.05), nor in the expression level of p-JNK between BPH and PCa (33.33% vs 35.00%, P >0.05), non-metastatic and metastatic PCa (30.77% vs 37.03%, P >0.05), Gleason ≤7 and Gleason >7 (35.29% vs 34.78%, P >0.05), or PSA ≤20 μg/L and PSA >20 μg/L (43.75% vs 10.93%, P >0.05). However, the expression of p-JNK was significantly higher in the survival >5 yr than in the survival ≤5 yr group of the PCa patients (50.00% vs 20.00%, P <0.05).
CONCLUSIONS
PCa patients with highly expressed p-JNK have a longer survival time and the high positive rate of p-JNK is associated with the prognosis of PCa.
Humans
;
Immunohistochemistry
;
JNK Mitogen-Activated Protein Kinases
;
metabolism
;
Male
;
Neoplasm Grading
;
Neoplasm Proteins
;
metabolism
;
Prognosis
;
Prostate-Specific Antigen
;
metabolism
;
Prostatic Hyperplasia
;
enzymology
;
mortality
;
pathology
;
Prostatic Neoplasms
;
enzymology
;
mortality
;
pathology
8.Thymosin β4 impeded murine stem cell proliferation with an intact cardiovascular differentiation.
Li NIE ; Shi-Jun GAO ; Ya-Nan ZHAO ; Jacob MASIKA ; Hong-Yan LUO ; Xin-Wu HU ; Liang-Pin ZHANG ; Ying ZENG ; Jürgen HESCHELER ; Hua-Min LIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):328-334
Thymosin β4 (Tβ4) is a key factor in cardiac development, growth, disease, epicardial integrity, blood vessel formation and has cardio-protective properties. However, its role in murine embryonic stem cells (mESCs) proliferation and cardiovascular differentiation remains unclear. Thus we aimed to elucidate the influence of Tβ4 on mESCs. Target genes during mESCs proliferation and differentiation were detected by real-time PCR or Western blotting, and patch clamp was applied to characterize the mESCs-derived cardiomyocytes. It was found that Tβ4 decreased mESCs proliferation in a partial dose-dependent manner and the expression of cell cycle regulatory genes c-myc, c-fos and c-jun. However, mESCs self-renewal markers Oct4 and Nanog were elevated, indicating the maintenance of self-renewal ability in these mESCs. Phosphorylation of STAT3 and Akt was inhibited by Tβ4 while the expression of RAS and phosphorylation of ERK were enhanced. No significant difference was found in BMP2/BMP4 or their downstream protein smad. Wnt3 and Wnt11 were remarkably decreased by Tβ4 with upregulation of Tcf3 and constant β-catenin. Under mESCs differentiation, Tβ4 treatment did not change the expression of cardiovascular cell markers α-MHC, PECAM, and α-SMA. Neither the electrophysiological properties of mESCs-derived cardiomyocytes nor the hormonal regulation by Iso/Cch was affected by Tβ4. In conclusion, Tβ4 suppressed mESCs proliferation by affecting the activity of STAT3, Akt, ERK and Wnt pathways. However, Tβ4 did not influence the in vitro cardiovascular differentiation.
Animals
;
Cell Cycle
;
drug effects
;
genetics
;
Cell Differentiation
;
drug effects
;
Cell Movement
;
drug effects
;
Cell Proliferation
;
drug effects
;
Dose-Response Relationship, Drug
;
Extracellular Signal-Regulated MAP Kinases
;
genetics
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
JNK Mitogen-Activated Protein Kinases
;
genetics
;
metabolism
;
Mice
;
Mouse Embryonic Stem Cells
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Nanog Homeobox Protein
;
genetics
;
metabolism
;
Octamer Transcription Factor-3
;
genetics
;
metabolism
;
Patch-Clamp Techniques
;
Primary Cell Culture
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-fos
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-myc
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
genetics
;
metabolism
;
Signal Transduction
;
Thymosin
;
pharmacology
9.JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1.
Zhong-liang WANG ; Ting-ting DU ; Rui-guang ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):88-94
In patients with advanced cancer, cancer-induced bone pain (CIBP) is a severe and common problem that is difficult to manage and explain. As c-Jun N-terminal kinase (JNK) and chemokine (C-X-C motif) ligand 1 (CXCL1) have been shown to participate in several chronic pain processes, we investigated the role of JNK and CXCL1 in CIBP and the relationship between them. A rat bone cancer pain model was established by intramedullary injection of Walker 256 rat gland mammary carcinoma cells into the left tibia of Sprague-Dawley rats. As a result, intramedullary injection of Walker 256 carcinoma cells induced significant bone destruction and persistent pain. Both phosphorylated JNK1 (pJNK1) and pJNK2 showed time-dependent increases in the ipsilateral spinal cord from day 7 to day 18 after tumor injection. Inhibition of JNK activation by intrathecal administration of SP600125, a selective pJNK inhibitor, attenuated mechanical allodynia and heat hyperalgesia caused by tumor inoculation. Tumor cell inoculation also induced robust CXCL1 upregulation in the ipsilateral spinal cord on day 18 after tumor injection. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody showed a stable analgesic effect. Intrathecal administration of SP600125 reduced CXCL1 increase in the spinal cord, whereas inhibition of CXCL1 in the spinal cord showed no influence on JNK activation. Taken together, these results suggested that JNK activation in spinal cord contributed to the maintenance of CIBP, which may act through modulation of CXCL1. Inhibition of the pJNK/CXCL1 pathway may provide a new choice for treatment of CIBP.
Animals
;
Antibodies, Neutralizing
;
immunology
;
therapeutic use
;
Bone Neoplasms
;
complications
;
metabolism
;
Cancer Pain
;
drug therapy
;
etiology
;
metabolism
;
Cell Line, Tumor
;
Chemokine CXCL1
;
immunology
;
metabolism
;
Female
;
JNK Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
metabolism
;
Protein Kinase Inhibitors
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord
;
metabolism
10.Effect of Borneol on the Permeability of Blood Tumor Barrier Model and its Mechanism Study.
Yan-mei XING ; Xiao-ning YAN ; Jun-qia GUO ; Rong ZHANG
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(6):696-702
OBJECTIVETo observe the effect of natural borneol on the permeability of blood tumor barrier (BTB) model and the expression and activation of mitogen-activated protein kinase (MAPKs) signal transduction pathway related protein kinase in vitro.
METHODSC6 rat glioma cells and human umbilical vein endothelial cells (HUVECs) were co-cultured to establish BTB model. Then 4 groups were set up, the blank control group, low, middle, and high dose borneol groups (25, 50, 100 µg/mL), 3 samples collected at 7 time points (0, 10, 30, 60, 120, 180, 240 min, respectively). Blank culture medium was exchanged in the blank control group while medication. Different doses of natural borneol were administered to the 3 borneol groups. Cells were collected at different time points. BTB permeability was determined using horseradish peroxidase (HRP). Expression levels of extracellular signal regulated protein kinase (ERK), phosphorylation extracellular signal regulated protein kinase (P-ERK), P38MAPK, phosphor-P38MAPK, c-Jun N-terminal kinase (JNK), and phosphorylation c-Jun N-terminal kinase (P-JNK) were detected using Western blot.
RESULTSCompared with the same group at min 0, the permeation rate obviously increased (P < 0.01) in the 3 borneol groups at the rest time points. P-ERK expression was elevated first, reached the peak at 30 min, and gradually recovered to the initial level (P > 0.05). Compared with the blank control group, HRP permeation rate increased from 10 min to 240 min (P < 0.01), and expression of P-ERK protein increased at 30 min and 60 min (P < 0.05) in the low dose borneol group; expression of P-JNK protein decreased in the 3 borneol groups at 180 min and 240 min (P < 0.05). Compared with the low dose borneol group, expression of P-ERK protein increased from 10 min to 180 min (P < 0.05), HRP permeation rate increased from 30 min to 180 min (P < 0.05), expression of P-JNK protein decreased at 180 and 240 min (P < 0.05) in the middle dose borneol group. Compared with the middle dose borneol group, HRP permeation rate increased from 10 min to 180 min (P < 0.05), expression of P-ERK protein increased from 10 min to 180 min (P < 0.05), expression of P-JNK protein increased at 180 min and decreased at 240 min (both P < 0.05) in the high dose borneol group.
CONCLUSIONNatural borneol arrived at the effect of regulating reversible BTB patency possibly through activating phosphorylation of ERK in MAPKs signal transduction pathway, and further reversibly down-regulating expression of associated proteins.
Animals ; Bornanes ; pharmacology ; Cell Line, Tumor ; drug effects ; Coculture Techniques ; Extracellular Signal-Regulated MAP Kinases ; metabolism ; Glioma ; pathology ; Human Umbilical Vein Endothelial Cells ; Humans ; JNK Mitogen-Activated Protein Kinases ; metabolism ; Neoplasms ; pathology ; Permeability ; Phosphorylation ; Rats ; Signal Transduction ; drug effects ; p38 Mitogen-Activated Protein Kinases ; metabolism

Result Analysis
Print
Save
E-mail