1.JNK in spinal cord facilitates bone cancer pain in rats through modulation of CXCL1.
Zhong-liang WANG ; Ting-ting DU ; Rui-guang ZHANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(1):88-94
		                        		
		                        			
		                        			In patients with advanced cancer, cancer-induced bone pain (CIBP) is a severe and common problem that is difficult to manage and explain. As c-Jun N-terminal kinase (JNK) and chemokine (C-X-C motif) ligand 1 (CXCL1) have been shown to participate in several chronic pain processes, we investigated the role of JNK and CXCL1 in CIBP and the relationship between them. A rat bone cancer pain model was established by intramedullary injection of Walker 256 rat gland mammary carcinoma cells into the left tibia of Sprague-Dawley rats. As a result, intramedullary injection of Walker 256 carcinoma cells induced significant bone destruction and persistent pain. Both phosphorylated JNK1 (pJNK1) and pJNK2 showed time-dependent increases in the ipsilateral spinal cord from day 7 to day 18 after tumor injection. Inhibition of JNK activation by intrathecal administration of SP600125, a selective pJNK inhibitor, attenuated mechanical allodynia and heat hyperalgesia caused by tumor inoculation. Tumor cell inoculation also induced robust CXCL1 upregulation in the ipsilateral spinal cord on day 18 after tumor injection. Inhibition of CXCL1 by intrathecal administration of CXCL1 neutralizing antibody showed a stable analgesic effect. Intrathecal administration of SP600125 reduced CXCL1 increase in the spinal cord, whereas inhibition of CXCL1 in the spinal cord showed no influence on JNK activation. Taken together, these results suggested that JNK activation in spinal cord contributed to the maintenance of CIBP, which may act through modulation of CXCL1. Inhibition of the pJNK/CXCL1 pathway may provide a new choice for treatment of CIBP.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Neutralizing
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Bone Neoplasms
		                        			;
		                        		
		                        			complications
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cancer Pain
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Chemokine CXCL1
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Protein Kinase Inhibitors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Spinal Cord
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
2.Angiotensin III increases monocyte chemoattractant protein-1 expression in cultured human proximal tubular epithelial cells.
Hyung Wook KIM ; Young Ok KIM ; Sun Ae YOON ; Jeong Sun HAN ; Hyun Bae CHUN ; Young Soo KIM
The Korean Journal of Internal Medicine 2016;31(1):116-124
		                        		
		                        			
		                        			BACKGROUND/AIMS: We investigated whether angiotensin III (Ang III) is involved in monocyte recruitment through regulation of the chemokine monocyte chemoattractant protein-1 (MCP-1) in cultured human proximal tubular epithelial cells (HK-2 cells). METHODS: We measured MCP-1 levels in HK-2 cells that had been treated with various concentrations of Ang III and Ang II type-1 (AT1) receptor antagonists at various time points. The phosphorylation states of p38, c-Jun N-terminal kinases (JNK), and extracellular-signal-regulated kinases were measured in Ang III-treated cells to explore the mitogen-activated protein kinase (MAPK) pathway. MCP-1 levels in HK-2 cell-conditioned media were measured after pre-treatment with the transcription factor inhibitors curcumin or pyrrolidine dithiocarbamate. RESULTS: Ang III increased MCP-1 protein production in dose- and time-dependent manners in HK-2 cells, which was inhibited by the AT1 receptor blocker losartan. p38 MAPK activity increased significantly in HK-2 cells exposed to Ang III for 30 minutes, and was sustained at higher levels after 60 minutes (p < 0.05). Total phosphorylated JNK protein levels tended to increase 20 minutes after stimulation with Ang III. Pre-treatment with a p38 inhibitor, a JNK inhibitor, or curcumin significantly inhibited Ang III-induced MCP-1 production. CONCLUSIONS: Ang III increases MCP-1 synthesis via stimulation of intracellular p38 and JNK MAPK signaling activity and subsequent activated protein-1 transcriptional activity in HK-2 cells.
		                        		
		                        		
		                        		
		                        			Angiotensin II Type 1 Receptor Blockers/pharmacology
		                        			;
		                        		
		                        			Angiotensin III/*pharmacology
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Chemokine CCL2/*metabolism
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Epithelial Cells/*drug effects/metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
		                        			;
		                        		
		                        			Kidney Tubules, Proximal/*drug effects/metabolism
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/pharmacology
		                        			;
		                        		
		                        			Signal Transduction/drug effects
		                        			;
		                        		
		                        			Time Factors
		                        			;
		                        		
		                        			Transcription Factor AP-1/metabolism
		                        			;
		                        		
		                        			Up-Regulation
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/metabolism
		                        			
		                        		
		                        	
3.Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats.
Jian-Bo LAI ; Chun-Fang QIU ; Chuan-Xi CHEN ; Min-Ying CHEN ; Juan CHEN ; Xiang-Dong GUAN ; Bin OUYANG
Chinese Medical Journal 2016;129(14):1719-1724
BACKGROUNDAn acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model.
METHODSThirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups.
RESULTSMPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group.
CONCLUSIONSInhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.
Animals ; Anthracenes ; therapeutic use ; Collagen ; metabolism ; JNK Mitogen-Activated Protein Kinases ; antagonists & inhibitors ; metabolism ; Lipopolysaccharides ; toxicity ; Lung ; drug effects ; metabolism ; pathology ; Male ; Rats ; Respiratory Distress Syndrome, Adult ; chemically induced ; drug therapy ; Signal Transduction ; drug effects
4.The effects of interleukin-1β in modulating osteoclast-conditioned medium's influence on gelatinases in chondrocytes through mitogen-activated protein kinases.
Jing XIE ; Na FU ; Lin-Yi CAI ; Tao GONG ; Guo LI ; Qiang PENG ; Xiao-Xiao CAI
International Journal of Oral Science 2015;7(4):220-231
		                        		
		                        			
		                        			Osteoarthritis is recognised to be an interactive pathological process involving the cartilage, subchondral bone and synovium. The signals from the synovium play an important role in cartilage metabolism, but little is known regarding the influence of the signalling from bone. Additionally, the collagenases and stromelysin-1 are involved in cartilage catabolism through mitogen-activated protein kinase (MAPK) signalling, but the role of the gelatinases has not been elucidated. Here, we studied the influence of osteoclastic signals on chondrocytes by characterising the expression of interleukin-1β (IL-1β)-induced gelatinases through MAPK signalling. We found that osteoclast-conditioned media attenuated the gelatinase activity in chondrocytes. However, IL-1β induced increased levels of gelatinase activity in the conditioned media group relative to the mono-cultured chondrocyte group. More specifically, IL-1β restored high levels of gelatinase activity in c-Jun N-terminal kinase inhibitor-pretreated chondrocytes in the conditioned media group and led to lower levels of gelatinase activity in extracellular signal-regulated kinase or p38 inhibitor-pretreated chondrocytes. Gene expression generally correlated with protein expression. Taken together, these results show for the first time that signals from osteoclasts can influence gelatinase activity in chondrocytes. Furthermore, these data show that IL-1β restores gelatinase activity through MAPK inhibitors; this information can help to increase the understanding of the gelatinase modulation in articular cartilage.
		                        		
		                        		
		                        		
		                        			3T3 Cells
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cartilage, Articular
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chondrocytes
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Culture Media, Conditioned
		                        			;
		                        		
		                        			Gelatinases
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Interleukin-1beta
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Monocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Protease Inhibitors
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Tissue Inhibitor of Metalloproteinase-1
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Tissue Inhibitor of Metalloproteinase-2
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			
		                        		
		                        	
5.Histamine Promotes the Release of Interleukin-6 via the H1R/p38 and NF-kappaB Pathways in Nasal Fibroblasts.
Il Ho PARK ; Ji Young UM ; Jung Sun CHO ; Seung Hoon LEE ; Sang Hag LEE ; Heung Man LEE
Allergy, Asthma & Immunology Research 2014;6(6):567-572
		                        		
		                        			
		                        			PURPOSE: Based on the close relationship between histamine and interleukin 6 (IL-6), we hypothesized that histamine may regulate the production of cytokines, such as IL-6, during allergic inflammation. Here, we examined the role of histamine in IL-6 production and histamine receptor activity in nasal fibroblasts, along with the mechanisms underlying these effects. METHODS: Experiments were performed using nasal fibroblasts from 8 normal patients. RT-PCR was used to identify the major histamine receptors expressed in nasal fibroblasts. Fibroblasts were then treated with histamine with or without histamine-receptor antagonists, and monitored for IL-6 production using an ELISA. Four potential downstream signaling molecules, p38, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-kappaB, were evaluated by Western blot, and a luciferase reporter assay. RESULTS: Elevated expression was seen for all histamine receptors, with IL-6 protein levels increasing significantly following histamine stimulation. Among the histamine-receptor specific antagonists, only the H1R antagonist significantly decreased IL-6 production in histamine-stimulated nasal fibroblasts. Histamine increased the expression level of phosphorylated p38 (pp38), pERK, and pJNK, as well as NF-kappaB induction. The H1R antagonist actively suppressed pp38 and NF-kappaB expression in histamine-induced nasal fibroblasts, but not pERK and pJNK. The p38 inhibitor strongly attenuated IL-6 production in histamine-stimulated nasal fibroblasts. CONCLUSIONS: The data presented here suggest that antihistamines may be involved in the regulation of cytokines, such as IL-6, due to the role of histamine as an inflammatory mediator in nasal fibroblasts.
		                        		
		                        		
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Fibroblasts*
		                        			;
		                        		
		                        			Histamine Antagonists
		                        			;
		                        		
		                        			Histamine*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Inflammation
		                        			;
		                        		
		                        			Interleukin-6*
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			Luciferases
		                        			;
		                        		
		                        			NF-kappa B*
		                        			;
		                        		
		                        			Nose
		                        			;
		                        		
		                        			Phosphotransferases
		                        			;
		                        		
		                        			Receptors, Histamine
		                        			
		                        		
		                        	
6.Precursor brain-derived neurotrophic factor reduces survival and axonal sprouting of rat spiral ganglion neurons in vitro.
Hua TONG ; Lei ZHOU ; Jian-Ping LIU ; Li GAO ; Na SHEN ; Xin-Sheng HUANG
Acta Physiologica Sinica 2014;66(2):151-157
		                        		
		                        			
		                        			The aim of the present study was to investigate the effect of precursor brain-derived neurotrophic factor (proBDNF) on survival and neurite outgrowth of cultured rat spiral ganglion neurons (SGNs). Spiral ganglions (SG) were collected from postnatal day 5 Sprague Dawley (SD) rats, then enzymatically digested and suspended. Dissociated SGNs were plated on poly-D-lysine/laminin coated eight-well chamber plates and maintained at 37 °C for 4 h to promote the attachment of the neurons. Cultured SGNs were randomly divided into five groups: control group, BDNF group (BDNF 10 ng/mL), C10 group (proBDNF 10 ng/mL), C50 group (proBDNF 50 ng/mL), and C100 group (proBDNF 100 ng/mL). All groups were incubated in a serum-free medium. 48 h after incubation, SGNs were fixed and stained for βIII tubulin. Immunostaining of the cultured SGNs showed that, compared with the control group, the cellular survival of C50 group and C100 group were significantly reduced (P < 0.001). Furthermore, surviving numbers of the three proBDNF-treated groups were all lower than the BDNF group. In order to assess the effect of proBDNF on cell morphology, SGNs were divided into two categories: SGNs with or without neurites. The results demonstrated that proBDNF significantly increased the proportions of SGNs without neurites in C10, C50 and C100 groups compared with that in control group (P < 0.001). In addition, c-Jun N-terminal kinase (JNK) inhibitor, SP600125 (20 μmol/L) significantly increased the surviving number of SGNs in C50 group. These results suggest that proBDNF reduces the survival rate of cultured SGNs and inhibits the sprouting of neurites. Furthermore, the inhibition of JNK signaling attenuates the effect of proBDNF on SGNs survival.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Axons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Brain-Derived Neurotrophic Factor
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			Neurites
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Protein Precursors
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Spiral Ganglion
		                        			;
		                        		
		                        			cytology
		                        			
		                        		
		                        	
7.Phospholipase D inhibitor enhances radiosensitivity of breast cancer cells.
Ju Cheol SON ; Dong Woo KANG ; Kwang Mo YANG ; Kang Yell CHOI ; Tae Gen SON ; Do Sik MIN
Experimental & Molecular Medicine 2013;45(8):e38-
		                        		
		                        			
		                        			Radiation and drug resistance remain the major challenges and causes of mortality in the treatment of locally advanced, recurrent and metastatic breast cancer. Dysregulation of phospholipase D (PLD) has been found in several human cancers and is associated with resistance to anticancer drugs. In the present study, we evaluated the effects of PLD inhibition on cell survival, cell death and DNA damage after exposure to ionizing radiation (IR). Combined IR treatment and PLD inhibition led to an increase in the radiation-induced apoptosis of MDA-MB-231 metastatic breast cancer cells. The selective inhibition of PLD1 and PLD2 led to a significant decrease in the IR-induced colony formation of breast cancer cells. Moreover, PLD inhibition suppressed the radiation-induced activation of extracellular signal-regulated kinase and enhanced the radiation-stimulated phosphorylation of the mitogen-activated protein kinases p38 and c-Jun N-terminal kinase. Furthermore, PLD inhibition, in combination with radiation, was very effective at inducing DNA damage, when compared with radiation alone. Taken together, these results suggest that PLD may be a useful target molecule for the enhancement of the radiotherapy effect.
		                        		
		                        		
		                        		
		                        			Breast Neoplasms/*drug therapy/*enzymology/pathology
		                        			;
		                        		
		                        			Cell Death/drug effects/radiation effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation/drug effects/radiation effects
		                        			;
		                        		
		                        			DNA Damage
		                        			;
		                        		
		                        			Enzyme Activation/drug effects/radiation effects
		                        			;
		                        		
		                        			Enzyme Inhibitors/*pharmacology/*therapeutic use
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases/metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases/metabolism
		                        			;
		                        		
		                        			Phospholipase D/*antagonists & inhibitors/metabolism
		                        			;
		                        		
		                        			Radiation Tolerance/*drug effects
		                        			;
		                        		
		                        			Radiation, Ionizing
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/metabolism
		                        			
		                        		
		                        	
8.Involvement of MAPK pathways in NMDA-induced apoptosis of rat cortical neurons.
Xiao-Rong YANG ; Ping SUN ; Hua-Ping QIN ; Pei-Pei SI ; Xue-Fei SUN ; Ce ZHANG
Acta Physiologica Sinica 2012;64(6):609-616
		                        		
		                        			
		                        			NMDA-induced excitotoxicity cause severe neuronal damage including apoptosis and necrosis. The present study was aimed to evaluate the proportion of NMDA-induced apoptosis of rat cortical neurons and discover signal transduction mechanism. Caspase inhibitor and lactate dehydrogenase (LDH) assay were used to study the NMDA-induced apoptosis. To explore the involved signal pathways, the primary culture of rat cortical neurons were pretreated by the inhibitors of three MAPK pathways, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. With 2 h of NMDA treatment, cellular apoptosis was measured by caspase-3 activity, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) and Annexin V staining. The results showed that: (1) Caspase-dependent apoptosis accounted for 22.49% in NMDA-induced neuronal death; (2) Pretreatment with p38 MAPK inhibitor SB203580 (10 μmol/L) significantly decreased NMDA-mediated caspase-3 activity by 30.43% (P < 0.05). However, ERK inhibitor PD98059 (20 μmol/L) or JNK inhibitor SP600125 (20 μmol/L) did not influence caspase-3 activity; (3) Pretreatment with SB203580 significantly reduced the number of NMDA-induced TUNEL-positive cells by 33.10% (P < 0.05). PD98059 (20 μmol/L) or SP600125 (20 μmol/L) did not show obvious effect; (4) Pretreatment with SB203580 (10 μmol/L) significantly reduced the number of NMDA-induced early apoptotic neurons by 55.56% (P < 0.05). Also, SP600125 (20 μmol/L) significantly decreased the amount of late apoptotic/dead cells by 67.59% (P < 0.05). There was no effect of PD98059 (20 μmol/L). These results indicate that: (1) NMDA induces neuronal apoptosis besides necrosis; (2) p38 MAPK, but not JNK and ERK, is involved in NMDA-induced neuronal apoptosis, and inhibition of the apoptotic signaling pathway contributes to neuroprotection; (3) JNK activation might contribute to NMDA-induced neuronal necrosis rather than apoptosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anthracenes
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Caspase 3
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			Imidazoles
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			N-Methylaspartate
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			Primary Cell Culture
		                        			;
		                        		
		                        			Pyridines
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			
		                        		
		                        	
9.C-Jun NH2-Terminal Kinase Contributes to Dexmedetomidine-Induced Contraction in Isolated Rat Aortic Smooth Muscle.
Seong Ho OK ; Young Seok JEONG ; Jae Gak KIM ; Seung Min LEE ; Hui Jin SUNG ; Hye Jung KIM ; Ki Churl CHANG ; Seong Chun KWON ; Ju Tae SOHN
Yonsei Medical Journal 2011;52(3):420-428
		                        		
		                        			
		                        			PURPOSE: Dexmedetomidine, a full agonist of alpha2B-adrenoceptors, is used for analgesia and sedation in the intensive care units. Dexmedetomidine produces an initial transient hypertension due to the activation of post-junctional alpha2B-adrenoceptors on vascular smooth muscle cells (SMCs). The aims of this in vitro study were to identify mitogen-activated protein kinase (MAPK) isoforms that are primarily involved in full, alpha2B-adrenoceptor agonist, dexmedetomidine-induced contraction of isolated rat aortic SMCs. MATERIALS AND METHODS: Rat thoracic aortic rings without endothelium were isolated and suspended for isometric tension recording. Cumulative dexmedetomidine (10(-9) to 10(-6) M) dose-response curves were generated in the presence or absence of extracellular signal-regulated kinase (ERK) inhibitor PD 98059, p38 MAPK inhibitor SB 203580, c-Jun NH2-terminal kinase (JNK) inhibitor SP 600125, L-type calcium channel blocker (verapamil and nifedipine), and alpha2-adrenoceptor inhibitor atipamezole. Dexmedetomidine-induced phosphorylation of ERK, JNK, and p38 MAPK in rat aortic SMCs was detected using Western blotting. RESULTS: SP 600125 (10(-6) to 10(-5) M) attenuated dexmedetomidine-evoked contraction in a concentration-dependent manner, whereas PD 98059 had no effect on dexmedetomidine-induced contraction. SB 203580 (10(-5) M) attenuated dexmedetomidine-induced contraction. Dexmedetomidine-evoked contractions were both abolished by atipamezole and attenuated by verapamil and nifedipine. Dexmedetomidine induced phosphorylation of JNK and p38 MAPK in rat aortic SMCs, but did not induce phosphorylation of ERK. CONCLUSION: Dexmedetomidine-induced contraction involves a JNK- and p38 MAPK-mediated pathway downstream of alpha2-adrenoceptor stimulation in rat aortic SMCs. In addition, dexmedetomidine-induced contractions are primarily dependent on calcium influx via L-type calcium channels.
		                        		
		                        		
		                        		
		                        			Adrenergic alpha-2 Receptor Agonists/*pharmacology
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Anthracenes/pharmacology
		                        			;
		                        		
		                        			Aorta/cytology
		                        			;
		                        		
		                        			Dexmedetomidine/*pharmacology
		                        			;
		                        		
		                        			Enzyme Inhibitors/pharmacology
		                        			;
		                        		
		                        			Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors/physiology
		                        			;
		                        		
		                        			Flavonoids/pharmacology
		                        			;
		                        		
		                        			Imidazoles/pharmacology
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors/*physiology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			*Muscle Contraction
		                        			;
		                        		
		                        			Muscle, Smooth, Vascular/drug effects/enzymology/*physiology
		                        			;
		                        		
		                        			Protein Isoforms/antagonists & inhibitors/physiology
		                        			;
		                        		
		                        			Pyridines/pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors/physiology
		                        			
		                        		
		                        	
10.APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells.
Fangfang ZHOU ; Theo VAN LAAR ; Huizhe HUANG ; Long ZHANG
Protein & Cell 2011;2(5):377-383
		                        		
		                        			
		                        			Amyloid beta (Aβ) precursor protein (APP) is a key protein in the pathogenesis of Alzheimer's disease (AD). Both APP and its paralogue APLP1 (amyloid beta precursor-like protein 1) have multiple functions in cell adhesion and proliferation. Previously it was thought that autophagy is a novel beta-amyloid peptide (Aβ)-generating pathway activated in AD. However, the protein proteolysis of APLP1 is still largely unknown. The present study shows that APLP1 is rapidly degraded in neuronal cells in response to stresses, such as proteasome inhibition. Activation of the endoplasmic reticulum (ER) stress by proteasome inhibitors induces autophagy, causing reduction of mature APLP1/APP. Blocking autophagy or JNK stress kinase rescues the protein expression for both APP and APLP1. Therefore, our results suggest that APP/APLP1 is degraded through autophagy and the APLP1 proteolysis is mainly mediated by autophagy-lysosome pathway.
		                        		
		                        		
		                        		
		                        			Amyloid beta-Protein Precursor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Endoplasmic Reticulum
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Leupeptins
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proteasome Endopeptidase Complex
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proteasome Inhibitors
		                        			;
		                        		
		                        			Protein Stability
		                        			;
		                        		
		                        			Rats
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail