1.Novel perspective in transplantation therapy of mesenchymal stem cells: targeting the ferroptosis pathway.
Yuzhu XU ; Pan FAN ; Lei LIU ; X U XUANFEI ; Lele ZHANG ; Jiadong WANG ; Yuao TAO ; Xiaolong LI ; Xi LI ; Yuntao WANG
Journal of Zhejiang University. Science. B 2023;24(2):115-129
Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.
Humans
;
Antioxidants/metabolism*
;
Ferroptosis
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
;
Iron Overload/metabolism*
2.Influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome: A retrospective study.
Yao ZHANG ; Chao XIAO ; Jing LI ; Lu Xi SONG ; You Shan ZHAO ; Jun Gong ZHAO ; Chun Kang CHANG
Chinese Journal of Hematology 2022;43(4):293-299
Objective: To analyze the influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome. Methods: MRI and/or DECT were used to detect liver and cardiac iron content in 181 patients with MDS, among whom, 41 received regular iron chelation therapy during two examinations. The adjusted ferritin (ASF) , erythropoietin (EPO) , cardiac function, liver transaminase, hepatitis antibody, and peripheral blood T cell polarization were detected and the results of myelofibrosis, splenomegaly, and cyclosporine were collected and comparative analyzed in patients. Results: We observed a positive correlation between liver iron concentration and ASF both in the MRI group and DECT groups (r=0.512 and 0.606, respectively, P<0.001) , only a weak correlation between the heart iron concentration and ASF in the MRI group (r=0.303, P<0.001) , and no significant correlation between cardiac iron concentration and ASF in the DECT group (r=0.231, P=0.053) . Moreover, transfusion dependence in liver and cardiac [MRI group was significantly associated with the concentration of iron in: LIC: (28.370±10.706) mg/g vs (7.593±3.508) mg/g, t=24.30, P<0.001; MIC: 1.81 vs 0.95, z=2.625, P<0.05; DECT group: liver VIC: (4.269±1.258) g/L vs (1.078±0.383) g/L, t=23.14, P<0.001: cardiac VIC: 1.69 vs 0.68, z=3.142, P<0.05]. The concentration of EPO in the severe iron overload group was significantly higher than that in the mild to moderate iron overload group and normal group (P<0.001) . Compared to the low-risk MDS group, the liver iron concentration in patients with MDS with cyclic sideroblasts (MDS-RS) was significantly elevated [DECT group: 3.80 (1.97, 5.51) g/L vs 1.66 (0.67, 2.94) g/L, P=0.004; MRI group: 13.7 (8.1,29.1) mg/g vs 11.6 (7.1,21.1) mg/g, P=0.032]. Factors including age, bone marrow fibrosis, splenomegaly, T cell polarization, use of cyclosporine A, liver aminotransferase, and hepatitis antibody positive had no obvious effect on iron metabolism. Conclusion: There was a positive correlation between liver iron concentration and ASF in patients with MDS, whereas there was no significant correlation between cardiac iron concentration and ASF. Iron metabolism was affected by transfusion dependence, EPO concentration, and RS.
Ferritins
;
Humans
;
Iron
;
Iron Overload
;
Liver/metabolism*
;
Myelodysplastic Syndromes/therapy*
;
Primary Myelofibrosis
;
Retrospective Studies
;
Splenomegaly
3.Research progress of iron metabolism in phenotype modification of β-thalassemia.
Chinese Journal of Medical Genetics 2021;38(1):27-31
β-thalassemia is a type of inherited hemolytic anemia caused by decreased globin production due to defect of the HBB gene. The pathogenesis of the disease is imbalance of α/β globin chains. The excess of α-globin chains will form hemichromes which can damage red blood cell membranes and lead to hemolysis, ineffective erythropoiesis, and secondary iron overload. Iron overload in turn can cause complications such as growth retardation, liver cirrhosis, cardiac insufficiency, and aggravate the disease phenotype. In recent decades, genes participating in iron metabolism have been discovered, and the mechanism of iron metabolism in the development of thalassemia has gradually been elucidated. Subsequently, by manipulating the expression of key genes in iron metabolism such as hepcidin and transferrin receptor, researchers have revealed that iron restriction can improve ineffective hematopoiesis and iron overload, which may provide a potential approach for the treatment of thalassemia. This article reviews the progress of research on iron metabolism-related genes and related pathways in β-thalassemia.
Humans
;
Iron/metabolism*
;
Iron Overload/genetics*
;
Phenotype
;
Research/trends*
;
beta-Thalassemia/physiopathology*
4.Ferroptosis was involved in the oleic acid-induced acute lung injury in mice.
Hang ZHOU ; Feng LI ; Jian-Yi NIU ; Wei-Yong ZHONG ; Min-Yu TANG ; Dong LIN ; Hong-Hui CUI ; Xue-Han HUANG ; Ying-Ying CHEN ; Hong-Yan WANG ; Yong-Sheng TU
Acta Physiologica Sinica 2019;71(5):689-697
The aim of the present study was to investigate the role of ferroptosis in acute lung injury (ALI) mouse model induced by oleic acid (OA). ALI was induced in the mice via the lateral tail vein injection of pure OA. The histopathological score of lung, lung wet-dry weight ratio and the protein content of bronchoalveolar lavage fluid (BALF) were used as the evaluation indexes of ALI. Iron concentration, glutathione (GSH) and malondialdehyde (MDA) contents in the lung tissues were measured using corresponding assay kits. The ultrastructure of pulmonary cells was observed by transmission electron microscope (TEM), and the expression level of prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA was detected by quantitative polymerase chain reaction (q-PCR). Protein expression levels of glutathione peroxidase 4 (GPX4), ferritin and transferrin receptor 1 (TfR1) in lung tissues were determined by Western blot. The results showed that histopathological scores of lung tissues, lung wet-dry weight ratio and protein in BALF in the OA group were higher than those of the control group. In the OA group, the mitochondria of pulmonary cells were shrunken, and the mitochondrial membrane was ruptured. The expression level of PTGS2 mRNA in the OA group was seven folds over that in the control group. Iron overload, GSH depletion and accumulation of MDA were observed in the OA group. Compared with the control group, the protein expression levels of GPX4 and ferritin in lung tissue were down-regulated in the OA group. These results suggest that ferroptosis plays a potential role in the pathogenesis of ALI in our mouse model, which may provide new insights for development of new drugs for ALI.
Acute Lung Injury
;
chemically induced
;
pathology
;
Animals
;
Apoptosis
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cyclooxygenase 2
;
metabolism
;
Ferritins
;
metabolism
;
Glutathione
;
analysis
;
Glutathione Peroxidase
;
metabolism
;
Iron
;
analysis
;
Iron Overload
;
physiopathology
;
Lung
;
cytology
;
pathology
;
Malondialdehyde
;
analysis
;
Mice
;
Microscopy, Electron, Transmission
;
Mitochondrial Membranes
;
ultrastructure
;
Oleic Acid
5.Relationship between Hepatitis C Virus Infection and Iron Overload.
Chinese Medical Journal 2017;130(7):866-871
OBJECTIVEThe aim of this study was to summarize the interactions between hepatitis C virus (HCV) infection and iron overload, and to understand the mechanisms of iron overload in chronic hepatitis C (CHC) and the role iron plays in HCV life cycle.
DATA SOURCESThis review was based on data in articles published in the PubMed databases up to January 28, 2017, with the keywords "hepatitis C virus", "iron overload", "iron metabolism", "hepcidin", "translation", and "replication".
STUDY SELECTIONArticles related to iron metabolism, iron overload in patients with CHC, or the effects of iron on HCV life cycle were selected for the review.
RESULTSIron overload is common in patients with CHC. The mechanisms involve decreased hepcidin levels caused by HCV through signal transducer and activator of transcription 3, mitogen-activated protein kinase, or bone morphogenetic protein/SMAD signaling pathways, and the altered expression of other iron-metabolism-related genes. Some studies found that iron increases HCV replication, while other studies found the opposite result. Most of the studies suggest the positive role of iron on HCV translation, the mechanisms of which involve increased expression levels of factors associated with HCV internal ribosome entry site-dependent translation, such as eukaryotic initiation factor 3 and La protein.
CONCLUSIONThe growing literature demonstrates that CHC leads to iron overload, and iron affects the HCV life cycle in turn. Further research should be conducted to clarify the mechanism involved in the complicated interaction between iron and HCV.
Female ; Hepacivirus ; pathogenicity ; Hepatitis C ; complications ; metabolism ; Hepcidins ; metabolism ; Humans ; Iron Overload ; etiology ; metabolism ; virology ; Male ; Signal Transduction
6.Effects of Iron Overload on the Apoptosis and Function of Splenic CD8+ T Cells in Mice.
Jie CHEN ; Ming-Feng ZHAO ; Xiao-Li CAO ; Juan-Xia MENG ; Yi XING ; Xiao-Yuan HE ; Xin JIN ; Ping XU ; Yan-Yu JIANG
Journal of Experimental Hematology 2016;24(3):903-908
OBJECTIVETo investigate the effects of iron overload on apoptosis and function of splenic CD8+ T cells in mice.
METHODSForty C57BL/6 mice were randomly divided into control groups, Iron overload (IO), IO+NAC and IO+DFX groups. The iron overload model was established by intraperitoneal injection of iron dextran, and saline was injected as the control. The levels of intracellular reactive oxygen species (ROS) and labile iron pool (LIP) were analyzed by measuring the mean fluorescence intensity (MFI) of 2-7 dichlorofluorescein (DCF) or calcein. The ratio of CD8+ T cells and the levels of IFN-γ, TNF-α, Granzyme-B, and perforin in CD8+ T cells were detected by flow cytometry. The CD8+ T cell apoptosis was determined by flow cytometry with Annexin V/PI double staining. Real-time PCR was used to detect the expression of IFN-γ, TNF-α, Granzyme-B, perforin, BCL-2, and bax at mRNA level in CD8+ T cells.
RESULTSIron overload was found by spleen iron staining and flow cytometry. The level of intracellular ROS in iron overload (IO) groups was higher than that of the control groups (P<0.01). The percentage of CD8+ T cells in spleen from mice with IO was lower than that in control groups (P<0.05). The expression of IFN-γ and Granzyme-B in CD8+ T cells in IO group were lower than that in control group, the expression of IFN-γ and Granzyme-B at mRNA level in CD8+ T cells was lower than that of control group (P<0.05). CD8+ T cell apoptosis in iron overload group was significantly higher than that in control groups (P<0.01); the expression of BCL-2 at mRNA level was lower than that in control group, but the expression of BAX at mRNA level was higher than that in control group (P<0.05). These effects could be reversed after treating iron-overloaded mice with DFX or NAC.
CONCLUSIONIron overload can inhibit the ratio of CD8+ T cells of splenic cells in mice, decrease the expression of IFN-γ, Granzyme-B, increase the apoptosis of CD3+ CD8+/CD8-. These effects may be regulated through increasing the intracellular ROS level, and can be partially reversed after treating iron-overloaded mice with DFX or NAC.
Animals ; Apoptosis ; CD8-Positive T-Lymphocytes ; cytology ; pathology ; Granzymes ; metabolism ; Interferon-gamma ; metabolism ; Iron ; metabolism ; Iron Overload ; physiopathology ; Mice ; Mice, Inbred C57BL ; Perforin ; metabolism ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Random Allocation ; Reactive Oxygen Species ; metabolism ; Spleen ; cytology ; Tumor Necrosis Factor-alpha ; metabolism ; bcl-2-Associated X Protein ; metabolism
7.Liver and heart iron deposition status in patients with β thalassemia major: a multicenter study.
Changgang LI ; Sixi LIU ; Ying WANG ; Feiqiu WEN ; Hongying GAO ; Guangfu CHEN ; Chunfu LI ; Xuedong WU ; Jianpei FANG ; Wenge HAO ; Riyang LIU ; Xinhua ZHANG ; Chiuwing Winnie CHU ; WingYan AU
Chinese Journal of Pediatrics 2014;52(2):90-93
OBJECTIVETo observe the status of iron deposition in patient with β thalassemia major, and to formulate appropriate treatment strategies.
METHODThe data of status of transfusion and chelation in 135 patients aged from 6 years and 4 months to 17 years and 11 months with β thalassemia major were collected and analyzed. Serum ferritin levels were determined and cardiac and hepatic iron deposition was determined using MRI T2(*) technology.
RESULTOf the 135 cases studied, 66 were male, and 69 were female, their average age was 12.1 years. Serum ferritin (SF) was determined for 111 cases, it varied from 1 086.8 µg/L to 15 011.5 µg/L. Among them, 16 cases had SF level <2 000 µg/L (14.5%) , in 41 cases SF were between 2 000 and 4 000 µg/L (36.0%) ;in 54 cases SF >4 000 µg/L (48.7%) . Liver MRI T2(*) results showed that in only 8 cases (5.9%) iron content in the liver was in normal range, 19 cases (14.9%) showed mild liver iron deposition;34 (25.2%) moderate and 74 (54.8%, the youngest one was only 6 years and 4 months of age) had severe iron deposition respectively. Cardiac MRI T2(*) showed that in 89 cases (65.9%) iron content in the heart was in normal range;19 cases (14.1%) had mild cardiac iron deposition and 27 (20.0%) presented severe iron deposition (the youngest one was only 9 years and 3 months of age) . SF level was obviously related to liver and cardiac iron deposition (MRI T2(*)) r and P value were -0.284, 0.003 and -0.374, 0.000 respectively. In 108 cases regular transfusion and chelation were delayed due to financial problem. The late and insufficient dosage administered and irregular chelation caused the higher SF level and the severe iron deposition.
CONCLUSIONThe survival status of β thalassemia major in China is worrisome. Majority of them had not received regular transfusion and chelation. Liver and cardiac iron deposition occur early and had a high incidence.
Adolescent ; Child ; Female ; Ferritins ; blood ; Humans ; Iron ; metabolism ; Iron Chelating Agents ; adverse effects ; therapeutic use ; Iron Overload ; epidemiology ; etiology ; Liver ; metabolism ; Magnetic Resonance Imaging ; Male ; Myocardium ; metabolism ; Radiography ; Retrospective Studies ; Transfusion Reaction ; beta-Thalassemia ; diagnostic imaging ; metabolism ; therapy
8.Iron chelation therapy and its influence on the alleviation of EPO resistance in MDS patients.
Yao ZHANG ; Chao XIAO ; Shu-Cheng GU ; Chun-Kang CHANG
Journal of Experimental Hematology 2014;22(4):1027-1032
This study was aimed to investigate the changes of erythropoietin (EPO), hemoglobin(Hb) and recombinant EPO (rEPO) levels in MDS patients receiving iron chelation therapy, and to explore the relationship between EPO and serum ferritin(SF). A total of 172 MDS patients and 30 healthy controls were studied. The levels of SF, EPO, serum iron (SI), total iron binding capacity (TIBC), C-reaction protein (CRP) and Hb were measured respectively, the level of SF was adjusted according to the changes of CRP. Among them, there were 34 cases of low-risk (SF>1 000 mg/L) receiving deferoxamine therapy, whose changes of SF, EPO, SI, TIBC, Hb levels were detected and compared before and after treatment. Besides, the difference in the incidence of EPO resistance in iron overload group and non-iron overload group was assessed before and after therapy, and 58 cases of low-risk and EPO<1 000 U/L MDS patients were given rEPO therapy. The results showed that the level of EPO in non-iron overload group was higher than that in the normal control group (997.44 ± 473.48 vs 467.27 ± 238.49, P < 0.05). Obviously, the level of EPO in iron overload group was higher than that in non-iron overload group and control group (3257.59 ± 697.19 vs 997.44 ± 473.48, P = 0.012, 3257.59 ± 697.19 vs 467.27 ± 238.49, P = 0.002). Otherwise, the incidence of EPO resistance in iron overload group was higher than that in non-iron overload group (18/35 vs 2/23, P = 0.001), and the level of EPO and SF was positively related to each other in iron overload group (r = 0.310,P = 0.036). After receiving iron chelation therapy, the levels of SF, SI, TIBC and EPO in iron overload group were significantly lower than that before therapy (3942.38 ± 641.82 vs 2266.35 ± 367.31, P = 0.028;48.61 ± 10.65 vs 28.52 ± 12.61, P = 0.034;59.84 ± 12.62 vs 33.76 ± 15.43, P = 0.045;3808.01 ± 750.22 vs 1954.78 ± 473.18, P = 0.042). Moreover, the level of Hb increased (35 ± 18 vs 57 ± 21, P = 0.046) and the EPO resistance in some patients was decreased. It is concluded that iron chelation therapy can improve the efficacy of EPO to alleviate EPO resistance in patients wtih anemic MDS, decrease the pathological level of EPO, enhance Hb levels and reduce the dependency on blood transfusion.
Adult
;
Aged
;
C-Reactive Protein
;
metabolism
;
Case-Control Studies
;
Chelation Therapy
;
Erythropoietin
;
blood
;
Female
;
Ferritins
;
blood
;
Hemoglobins
;
metabolism
;
Humans
;
Iron
;
metabolism
;
Iron Overload
;
Male
;
Middle Aged
;
Myelodysplastic Syndromes
;
drug therapy
;
metabolism
;
Recombinant Proteins
;
therapeutic use
9.Value of magnetic resonance imaging T2* tests in detecting heart and liver iron overload in patients with β-thalassemia major.
Xuedong WU ; Yuanfang JING ; Fuyu PEI ; Jiaqi CHEN ; Xiaoqin FENG ; Yuelin HE ; Yuming ZHANG ; Chunfu LI
Journal of Southern Medical University 2013;33(2):249-252
OBJECTIVETo assess the value of magnetic resonance imaging T2* tests in the detection of myocardial and liver iron overload in patients with β-thalassemia major (β-TM).
METHODSFrom 2010 to 2011, 28 β-TM patients over 10 years old under blood transfusion therapy and chelation care with serum ferritin (SF)>1000 µg/L underwent myocardial and liver MRI T2* tests on a voluntary basis. The results were analyzed in relation with age, SF, and left ventricular ejection fraction (LVEF).
RESULTSFourteen out of the 28 cases (50%) were found to have myocardial iron overload, including 7 severe cases, 2 moderate cases, and 5 mild cases. All the 28 cases had liver iron overload, including 2 mild cases, 7 moderate cases, and 19 severe cases. Two out of the 28 cases had lowered LVEF (7.14%), and one of them had severe myocardial iron overload. There was a negative correlation between myocardial MRI T2* and SF (r=-0.479, P=0.01). Myocardial MRI T2* was positively correlated with liver MRI T2* (r=0.378, P=0.047). Age was not significantly correlated with SF, LVEF, or liver MRI T2*.
CONCLUSIONMagnetic resonance imaging (T2*) detection is an effective and non-invasive means for detecting myocardial and liver iron overload in patients with β-thalassemia major receiving blood transfusion. T2* combined with SF is the main diagnostic indicator to assess iron overload in the vital organs.
Adolescent ; Adult ; Child ; Female ; Ferritins ; blood ; Humans ; Iron ; metabolism ; Iron Overload ; diagnosis ; metabolism ; pathology ; Liver ; metabolism ; Magnetic Resonance Imaging ; Male ; Myocardium ; metabolism ; Young Adult ; beta-Thalassemia ; diagnosis ; metabolism ; pathology
10.The mechanisms underlying bone marrow damage by iron overload in pancytopenic patients with positive BMMNC-Coombs test.
Lei HUANG ; Rong FU ; Li-juan LI ; Hui LIU ; Yi-hao WANG ; Hong-lei WANG ; Tian ZHANG ; Kai DING ; Shao-xue DING ; Er-bao RUAN ; Wen QU ; Jing GUAN ; Guo-jin WANG ; Jia SONG ; Hua-quan WANG ; Yu-hong WU ; Li-min XING ; Hong LIU ; Xiao-ming WANG ; Zong-hong SHAO
Chinese Journal of Hematology 2013;34(5):430-434
OBJECTIVETo investigate the mechanisms underlying bone marrow damage by iron overload in pancytopenic patients with positive BMMNC-Coombs test (IRP).
METHODSTwenty-one iron overloading, 26 non-iron overloading IRP patients and 10 normal controls were enrolled in this study. The expressions of ROS, Bcl-2, Caspase-3 and apoptosis of BMMNC were analyzed by flow cytometry (FCM). Antioxidants were added to iron overloading IRP BMMNC, and then the changes of indices above were detected by FCM. The number and apoptosis of T lymphocytes of IRP patients were also detected.
RESULTSROS and apoptosis of BMMNC, myelocytes, erythrocytes and stem cells of iron overloading IRP patients were significantly higher than that of non-iron overloading IRP ones and normal controls (P < 0.05). The expressions of Bcl-2 on BMMNC, erythrocytes and stem cells of iron overloading IRP patients were significantly lower than those of non-iron overloading IRP ones (P < 0.05). The levels of Caspase-3 on myelocytes, erythrocytes and stem cells of iron overloading IRP patients were significantly higher than those of non-iron overloading IRP ones and normal controls (P < 0.05). After treatment with antioxidants, the expressions of ROS, Caspase-3 and apoptosis of iron overloading IRP BMMNC significantly decreased, but opposite for Bcl-2. The percentages of CD4(+) lymphocytes [ ( 40.86 ± 8.74)%] and CD4(+)/CD8(+) (1.44 ± 0.36) in PB of iron overloading IRP patients were significantly higher than that of non-iron overloading IRP ones [(35.96 ± 7.03)% and 1.14 ± 0.37] and normal controls [(28.00 ± 6.73)% and 0.79 ± 0.21], respectively (P < 0.05), as opposite for CD8(+) lymphocytes (P < 0.05). The apoptosis of CD8(+) lymphocytes [(27.35 ± 10.76)%] and the ratio of CD8(+) apoptosis/CD4(+) apoptosis (2.51 ± 0.81) in BM of iron overloading IRP patients were significantly higher than those of non-iron overloading IRP ones [(15.47 ± 8.99)%] and normal controls (1.39 ± 0.47), respectively (P < 0.05). The apoptosis of erythrocytes and stem cells coated with auto-antibodies in BM of iron overloading IRP patients were significantly higher than those of non-iron overloading IRP and normal controls.
CONCLUSIONMechanisms underlying bone marrow damage by iron overload might be through the follows: ①The increased ROS induced by excessive iron deposition affected the expressions of Caspase-3 and Bcl-2, which caused more BMMNC apoptosis; ②The abnormal number and ratio of T lymphocytes caused by iron overload aggravated the abnormality of immunity of IRP; ③Iron overload may increase the damage to erythrocytes and stem cells coated with auto-antibodies.
Adolescent ; Adult ; Aged ; Bone Marrow ; pathology ; Case-Control Studies ; Caspase 3 ; metabolism ; Coombs Test ; Female ; Humans ; Iron Overload ; Male ; Middle Aged ; Pancytopenia ; immunology ; pathology ; physiopathology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; Reactive Oxygen Species ; metabolism ; Young Adult

Result Analysis
Print
Save
E-mail