1.Relationship between Iron Metabolic Parameters and Platelet Counts in Blood Donors.
Wen-Juan ZHONG ; Qiu-Fang ZHANG ; Cheng-Yong HUANG ; Ying-Chun CHEN ; Ye-Ping ZHOU ; Jin-Ying CHEN ; Jia ZENG
Journal of Experimental Hematology 2023;31(5):1481-1485
OBJECTIVE:
To investigate the correlation of iron metabolic parameters with platelet counts in blood donors.
METHODS:
A total of 400 blood donors who met requirements of apheresis platelet donation were collected, and their hematological parameters were analyzed. The donors were divided into low ferritin group and normal group, the differences of hematological parameters between the two groups were compared, and the correlation of iron metabolic parameters and routine hematology parameters with platelet counts were analyzed.
RESULTS:
Whether male or female, low ferritin group had higher platelet counts than normal group (P < 0.01). Among the iron metabolic parameters, the platelet counts was negatively correlated with serum ferritin (SF), serum iron (SI), and transferrin saturation (TSAT) (r =-0.162, r =-0.153, r =-0.256), and positively correlated with total iron binding capacity (TIBC) and unsaturated iron binding capacity (UIBC) (r =0.219, r =0.294) in female blood donors. Platelet counts was also negatively correlated with SF, SI and TSAT (r =-0.188, r =-0.148, r =-0.224) and positively correlated with UIBC (r =0.220) in male blood donors. Among the routine hematology parameters, platelet counts was negatively correlated with mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and reticulocyte hemoglobin equivalent (Ret-He) in female blood donors (r =-0.236, r =-0.267, r =-0.213, r =-0.284). Platelet counts was also negatively correlated with MCH, MCHC and Ret-He in male blood donors (r =-0.184, r =-0.221, r =-0.209).
CONCLUSION
In blood donors with low C-reactive protein level, the lower the iron store capacity, the lower the iron utilization, and the platelet counts tends to rise.
Male
;
Humans
;
Female
;
Iron/metabolism*
;
Blood Donors
;
Platelet Count
;
Anemia, Iron-Deficiency
;
Hemoglobins
;
Ferritins
2.Novel perspective in transplantation therapy of mesenchymal stem cells: targeting the ferroptosis pathway.
Yuzhu XU ; Pan FAN ; Lei LIU ; X U XUANFEI ; Lele ZHANG ; Jiadong WANG ; Yuao TAO ; Xiaolong LI ; Xi LI ; Yuntao WANG
Journal of Zhejiang University. Science. B 2023;24(2):115-129
Ex vivo culture-amplified mesenchymal stem cells (MSCs) have been studied because of their capacity for healing tissue injury. MSC transplantation is a valid approach for promoting the repair of damaged tissues and replacement of lost cells or to safeguard surviving cells, but currently the efficiency of MSC transplantation is constrained by the extensive loss of MSCs during the short post-transplantation period. Hence, strategies to increase the efficacy of MSC treatment are urgently needed. Iron overload, reactive oxygen species deposition, and decreased antioxidant capacity suppress the proliferation and regeneration of MSCs, thereby hastening cell death. Notably, oxidative stress (OS) and deficient antioxidant defense induced by iron overload can result in ferroptosis. Ferroptosis may inhibit cell survival after MSC transplantation, thereby reducing clinical efficacy. In this review, we explore the role of ferroptosis in MSC performance. Given that little research has focused on ferroptosis in transplanted MSCs, further study is urgently needed to enhance the in vivo implantation, function, and duration of MSCs.
Humans
;
Antioxidants/metabolism*
;
Ferroptosis
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
;
Iron Overload/metabolism*
3.The efficacy and safety of intravenous sucrose iron therapy for recurrent iron deficiency anemia.
Jing Qian LIU ; Xia Wan YANG ; Xu LIU ; Jing HU ; Xiang Rong HU ; Xiao Xia LI ; Yu Fei ZHAO ; Yi Meng SHI ; Bao Hang ZHANG ; Wen Rui YANG ; Guang Xin PENG ; Xin ZHAO ; Feng Kui ZHANG
Chinese Journal of Hematology 2023;44(5):408-412
Objective: To evaluate the efficacy and safety of intravenous iron supplementation in patients with recurrent iron deficiency anemia (IDA) . Methods: This retrospective analysis of 90 patients with recurrent IDA from May 2012 to December 2021 was conducted, comparing the efficacy and safety of the intravenous iron therapy group and the oral iron therapy group. Results: Among the 90 patients with recurrent IDA, 20 were males and 70 were females, with a median age of 40 (range: 14-85) years. A total of 60 patients received intravenous iron supplementation and 30 received oral iron supplementation. The hematologic response rates in the intravenous iron group were significantly higher than those in the oral iron group at 4 and 8 weeks after treatment [80.0% (48/60) vs 3.3% (1/30) and 96.7% (58/60) vs 46.7% (14/30), all P<0.001, respectively]. The median increase in hemoglobin levels was also significantly higher in the intravenous iron group than in the oral iron group [38 (4, 66) g/L vs 7 (1, 22) g/L at week 4 and 44.5 (18, 80) g/L vs 19 (3, 53) g/L at week 8, all P<0.001]. The intravenous iron group had a significantly higher proportion of patients who achieved normal hemoglobin levels than the oral iron group (55.0% vs 0 and 90% vs 43.3%, all P<0.001, respectively). Iron metabolism indicators were tested before and after 8 weeks of treatment in 26 and 7 patients in the intravenous and oral iron groups, respectively. The median increase in serum ferritin (SF) levels in the intravenous iron group 8 weeks after treatment was 113.7 (49.7, 413.5) μg/L, and 54% (14/26) of these patients had SF levels of ≥100 μg/L, which was significantly higher than the median increase in SF levels in the oral iron group [14.0 (5.8, 84.2) μg/L, t=4.760, P<0.001] and the proportion of patients with SF levels of ≥100 μg/L (P=0.013). The incidence of adverse reactions was 3.3% (2/60) in the intravenous iron group, which was significantly lower than that in the oral iron group [20.0% (6/30), P=0.015]. Conclusion: Intravenous iron supplementation is more effective for hematologic response, faster hemoglobin increase, and higher iron storage replenishment rates compared with oral iron supplementation in patients with recurrent IDA, and it is well tolerated by patients.
Male
;
Female
;
Humans
;
Adolescent
;
Young Adult
;
Adult
;
Middle Aged
;
Aged
;
Aged, 80 and over
;
Anemia, Iron-Deficiency/epidemiology*
;
Sucrose/therapeutic use*
;
Ferric Compounds/therapeutic use*
;
Retrospective Studies
;
Iron/therapeutic use*
;
Hemoglobins/therapeutic use*
5.Causes of Abnormal Hemoglobin Electrophoresis.
Xue-Li PANG ; Hong-Fei DU ; Yan YANG ; Xiao-Ping ZHOU ; Ning TANG ; Jia-Wei LIU ; Ying XU
Journal of Experimental Hematology 2023;31(3):830-836
OBJECTIVE:
To investigate the possible causes of abnormal hemoglobin electrophoresis results.
METHODS:
The hemoglobin electrophoresis results of 5 696 patients in the First Affiliated Hospital of Chengdu Medical College from September 2018 to July 2021 were collected, and the abnormal results and clinical significance were analyzed.
RESULTS:
The results of 486 patients (accounting for 8.53%) were abnormal, of which 300 cases had increased HbA2, 135 cases had decreased HbA2, 44 cases had increased F alone, and 7 cases had abnormal hemoglobin bands. Among the 486 patients, 246 patients were thalassemia gene positive (the positive rate was 50.62%), including 29 cases of α thalassemia, 208 cases of β thalassemia and 9 cases of αβ thalassemia. Among the patients with elevated HbA2, 68.67% were detected β thalassemia, 3.00% αβ thalassemia, 9.33% were suspected to be caused by macrocytosis, 6.33% by thyroid dysfunction, and 12.67% by uncertainty of the method. Among the patients with reduced HbA2, 21.48% were detected α thalassemia, 60.00% iron deficiency anemia, 8.15% were suspected to be caused by thyroid dysfunction, and 10.37% by uncertainty of the method. Among the patients with elevated F alone, the results of thalassemia gene detection were negative, 40.91% of them were suspected to be caused by macrocytosis, 27.27% by hereditary persistence of fetal hemoglobin, 29.55% by special physiological condition of pregnant women, and 2.27% by hyperthyroidism. Abnormal hemoglobin bands were detected in 7 patients, including 4 cases of hemoglobin D, 2 cases of hemoglobin E, and 1 case of hemoglobin J.
CONCLUSION
Thalassemia, iron deficiency anemia, macrocytosis such as megaloblastic anemia and non-severe aplastic anemia, thyroid dysfunction, hereditary persistence of fetal hemoglobin, abnormal hemoglobin diseases, the uncertainty of the method are all important causes of abnormal hemoglobin electrophoresis results. In clinical work, the patient's indicators should be comprehensively analyzed to determine the possible cause.
Humans
;
Female
;
Pregnancy
;
beta-Thalassemia/genetics*
;
Anemia, Iron-Deficiency
;
Fetal Hemoglobin/analysis*
;
alpha-Thalassemia
;
Blood Protein Electrophoresis
;
Hemoglobin A2/analysis*
;
Hemoglobins, Abnormal/analysis*
6.Efficacy of intermittent iron supplementation in children with mild iron-deficiency anemia.
Jian-Yun LI ; Li LI ; Jun LIU ; Xiao-Lan LIU ; Ji-Wen LIU
Chinese Journal of Contemporary Pediatrics 2022;24(2):182-185
OBJECTIVES:
To study the efficacy of intermittent iron supplementation in children with mild iron-deficiency anemia.
METHODS:
A total of 147 children with mild iron-deficiency anemia were enrolled in this prospective study. They were divided into an intermittent iron supplementation group (n=83) and a conventional iron supplementation group (n=64). The levels of hemoglobin were measured before treatment and after 1 and 3 months of treatment. The treat response rate and the incidence rate of adverse drug reactions were compared between the two groups.
RESULTS:
Both groups had a significant increase in the level of hemoglobin after iron supplementation (P<0.05). After 1 month of treatment, the conventional iron supplementation group had a significantly higher treatment response rate than the intermittent iron supplementation group (61% vs 42%, P<0.05). After 3 months of treatment, there was no significant difference in the treatment response between the two groups (86% vs 78%, P>0.05). The incidence rate of adverse drug reactions in the conventional iron supplementation group was significantly higher than that in the intermittent iron supplementation group (25% vs 8%, P<0.05).
CONCLUSIONS
For children with mild iron-deficiency anemia, although intermittent iron supplementation is inferior to conventional iron supplementation in the short-term efficacy, there is no significant difference in the long-term efficacy between the two methods, and compared with conventional iron supplementation, intermittent iron supplementation can reduce the incidence of adverse drug reactions, alleviate family financial burdens, and improve treatment compliance of children, thus holding promise for clinical application.
Anemia, Iron-Deficiency/epidemiology*
;
Child
;
Dietary Supplements/adverse effects*
;
Hemoglobins/analysis*
;
Humans
;
Iron, Dietary/adverse effects*
;
Prospective Studies
7.Luteoloside protects the vascular endothelium against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway.
Shu-Ping CHEN ; Tian-Hong HU ; Qing ZHOU ; Tian-Peng CHEN ; Dong YIN ; Huan HE ; Qing HUANG ; Ming HE
Chinese Journal of Natural Medicines (English Ed.) 2022;20(1):22-32
Iron overload injury is considered to be a part of blood stasis syndrome of arthralgia in traditional Chinese medicine. Its primary therapies include clearing heat and detoxification, activating blood circulation, and removing blood stasis. Lonicera japonica flos (LJF) has long been known as an excellent antipyretic and antidote. Luteoloside (Lut) is one of the main components of LJF and exhibits antioxidant, anti-inflammatory, and cytoprotective properties. However, the protection of Lut against iron overload injury and its underlying mechanisms remain unclear. Therefore, HUVECs were exposed to 50 μmol·L-1 iron dextran for 48 h to establish an iron overload damage model and the effects of Lut were assessed. Our results showed that 20 μmol·L-1 Lut not only increased cell viability and weakened LDH activity, but also significantly up-regulated DDAHⅡ expression and activity, increased p-eNOS/eNOS ratio and NO content, and reduced ADMA content in HUVECs exposed to iron overload. Furthermore, Lut significantly attenuated intracellular/mitochondrial ROS generation, improved SOD, CAT, and GSH-Px activities, reduced MDA content, maintained MMP, inhibited mPTP opening, prevented cyt c from mitochondria released into cytoplasm, reduced cleaved-caspase3 expression, and ultimately decreased cell apoptosis induced by iron overload. The effects of Lut were similar to those of L-arginine (an ADMA competitive substrate), cyclosporin A (a mPTP blocker agent), and edaravone (a free radical scavenger) as positive controls. However, addition of pAD/DDAH II-shRNA adenovirus reversed the above beneficial effects of Lut. In conclusion, Lut can protect HUVECs against iron overload injury via the ROS/ADMA/DDAH II/eNOS/NO pathway. The mitochondria are the target organelles of Lut's protective effects.
Endothelium, Vascular
;
Glucosides
;
Humans
;
Iron Overload
;
Luteolin
;
Reactive Oxygen Species
8.Influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome: A retrospective study.
Yao ZHANG ; Chao XIAO ; Jing LI ; Lu Xi SONG ; You Shan ZHAO ; Jun Gong ZHAO ; Chun Kang CHANG
Chinese Journal of Hematology 2022;43(4):293-299
Objective: To analyze the influencing factors of iron metabolism assessment in patients with myelodysplastic syndrome. Methods: MRI and/or DECT were used to detect liver and cardiac iron content in 181 patients with MDS, among whom, 41 received regular iron chelation therapy during two examinations. The adjusted ferritin (ASF) , erythropoietin (EPO) , cardiac function, liver transaminase, hepatitis antibody, and peripheral blood T cell polarization were detected and the results of myelofibrosis, splenomegaly, and cyclosporine were collected and comparative analyzed in patients. Results: We observed a positive correlation between liver iron concentration and ASF both in the MRI group and DECT groups (r=0.512 and 0.606, respectively, P<0.001) , only a weak correlation between the heart iron concentration and ASF in the MRI group (r=0.303, P<0.001) , and no significant correlation between cardiac iron concentration and ASF in the DECT group (r=0.231, P=0.053) . Moreover, transfusion dependence in liver and cardiac [MRI group was significantly associated with the concentration of iron in: LIC: (28.370±10.706) mg/g vs (7.593±3.508) mg/g, t=24.30, P<0.001; MIC: 1.81 vs 0.95, z=2.625, P<0.05; DECT group: liver VIC: (4.269±1.258) g/L vs (1.078±0.383) g/L, t=23.14, P<0.001: cardiac VIC: 1.69 vs 0.68, z=3.142, P<0.05]. The concentration of EPO in the severe iron overload group was significantly higher than that in the mild to moderate iron overload group and normal group (P<0.001) . Compared to the low-risk MDS group, the liver iron concentration in patients with MDS with cyclic sideroblasts (MDS-RS) was significantly elevated [DECT group: 3.80 (1.97, 5.51) g/L vs 1.66 (0.67, 2.94) g/L, P=0.004; MRI group: 13.7 (8.1,29.1) mg/g vs 11.6 (7.1,21.1) mg/g, P=0.032]. Factors including age, bone marrow fibrosis, splenomegaly, T cell polarization, use of cyclosporine A, liver aminotransferase, and hepatitis antibody positive had no obvious effect on iron metabolism. Conclusion: There was a positive correlation between liver iron concentration and ASF in patients with MDS, whereas there was no significant correlation between cardiac iron concentration and ASF. Iron metabolism was affected by transfusion dependence, EPO concentration, and RS.
Ferritins
;
Humans
;
Iron
;
Iron Overload
;
Liver/metabolism*
;
Myelodysplastic Syndromes/therapy*
;
Primary Myelofibrosis
;
Retrospective Studies
;
Splenomegaly
9.Research progress on the regulation mechanisms of iron metabolism in anemia of chronic disease.
Hai-Chao MI ; Fang CUI ; Yu-Tao DU ; Ruo-Tong WANG ; Rui ZHANG ; Min SHI
Acta Physiologica Sinica 2022;74(4):639-647
Anemia of chronic disease (ACD), complicated by various chronic inflammatory diseases, is the second most prevalent type of anemia after iron deficiency anemia in the world. ACD significantly reduces the life quality of patients with chronic diseases, and represents an independent poor prognostic factor in certain chronic diseases. A large body of studies has demonstrated that most of anemia is related to abnormal iron metabolism. In the past decade, hepcidin, as a key factor in regulating iron metabolism, has attracted enormous attention due to its important role in the pathogenesis of ACD. This article reviews the research progress on the role and underlying regulatory mechanisms of hepcidin in ACD. We also discuss the potential of hepcidin as an effective therapeutic target for ACD treatment, in order to provide a new maneuver for improving the quality of ACD patients' life.
Anemia
;
Anemia, Iron-Deficiency/pathology*
;
Chronic Disease
;
Hepcidins
;
Humans
;
Iron/metabolism*
10.Efficacy and Mechanism of Buxue Yimu Pills on Gynecological Anemia: A Combination of Clinical and Network Pharmacology Study.
Yan-Fang WANG ; Yan DENG ; Su-Ying ZHANG ; Dong LIU ; Bin LUO ; Xue WANG ; Miao DENG ; Rui-Lin MA ; Ai-Jun SUN
Chinese journal of integrative medicine 2022;28(12):1072-1080
OBJECTIVE:
To compare the clinical efficacy and safety of oral administration of Buxue Yimu Pills (BYP, ), ferrous sulfate (FS), and the combination of BYP and FS on gynecological anemia, and investigate the mechanisms using network pharmacology.
METHODS:
A randomized, controlled, multi-center clinical trial was conducted. Totally 150 patients with hemoglobin of 70-110 g/L due to gynecological conditions were recruited and randomized (using the block randomization method) into Buxue Yimu Pills group (24 g/d), oral iron group (FS Tablets, 0.9 g/d), and combined treatment group (BYP, 24 g/d plus FS Tablets, 0.9 g/d), 50 patients in each group. At the enrollment and 4-week treatment, complete blood count, serum iron indexes were evaluated. Adverse events, liver and renal functions, as well as blood coagulation were observed. Network pharmacology was conducted to identify the active ingredients and explore the potential mechanisms of BYP.
RESULTS:
Ten (20%) and 7 (14%) participants discontinued the therapy due to gastrointestinal symptoms in oral iron and combination treatment groups. All 3 groups showed elevated hemoglobin. The patients in the iron group exhibited typically elevated in serum iron and ferritin and decreased in total iron-binding capacity. No change in iron indexes was observed in BYP group. The patients in the combination treatment group neither showed significant changes in serum ferritin nor total iron-binding capacity. No significant adverse reactions were observed in the BYP group. The network pharmacology identified 27 bioactive compounds and 145 targets of BYP on gynecological anemia. Biological processes and pathways including regulation of inflammation, hormone, angiogenesis and hemostasis, response to decreased oxygen levels, effects on myeloma cell, and response to metal ions were identified.
CONCLUSION
BYP contributes to the practical improvement on gynecological anemia potentially through multi-target mechanisms and optimized iron re-distribution. (Trial registration: No. NCT03232554).
Humans
;
Anemia/drug therapy*
;
Anemia, Iron-Deficiency/drug therapy*
;
Ferritins/therapeutic use*
;
Hemoglobins
;
Iron/therapeutic use*
;
Network Pharmacology
;
Drugs, Chinese Herbal

Result Analysis
Print
Save
E-mail