1.The role of iron-uptake factor PiuB in pathogenicity of soybean pathogen Xanthomonas axonopodis pv. glycines.
Ruyi SU ; Luojia JIN ; Jiangling XU ; Huiya GENG ; Xiao CHEN ; Siyi LIN ; Wei GUO ; Zhiyuan JI
Chinese Journal of Biotechnology 2024;40(1):177-189
Iron is an essential element for living organisms that plays critical roles in the process of bacterial growth and metabolism. However, it remains to be elucidated whether piuB encoding iron-uptake factor is involved in iron uptake and pathogenicity of Xanthomonas axonopodis pv. glycines (Xag). To investigate the function of piuB, we firstly generated a piuB deletion mutant (ΔpiuB) by homologous recombination. Compared with the wild-type, the piuB mutant exhibited significantly reduced growth and virulence in host soybean. The mutant displayed markedly increased siderophore secretory volume, and its sensitivity to Fe3+, Cu2+, Zn2+ and Mn2+ was significantly enhanced. Additionally, the H2O2 resistance, exopolysaccharide yield, biofilm formation, and cell mobility of ΔpiuB were significantly diminished compared to that of the wild-type. The addition of exogenous Fe3+ cannot effectively restore the above characteristics of ΔpiuB. However, expressing piuB in trans rescued the properties lost by ΔpiuB to the levels in the wild-type. Taken together, our results demonstrated that PiuB is a potential factor for Xag to assimilate Fe3+, and is necessary for Xag to be pathogenic in host soybean.
Iron
;
Glycine max
;
Virulence
;
Xanthomonas axonopodis/genetics*
;
Hydrogen Peroxide
2.Intermittent Theta Burst Stimulation Attenuates Cognitive Deficits and Alzheimer's Disease-Type Pathologies via ISCA1-Mediated Mitochondrial Modulation in APP/PS1 Mice.
Yang ZHU ; Hao HUANG ; Zhi CHEN ; Yong TAO ; Ling-Yi LIAO ; Shi-Hao GAO ; Yan-Jiang WANG ; Chang-Yue GAO
Neuroscience Bulletin 2024;40(2):182-200
Intermittent theta burst stimulation (iTBS), a time-saving and cost-effective repetitive transcranial magnetic stimulation regime, has been shown to improve cognition in patients with Alzheimer's disease (AD). However, the specific mechanism underlying iTBS-induced cognitive enhancement remains unknown. Previous studies suggested that mitochondrial functions are modulated by magnetic stimulation. Here, we showed that iTBS upregulates the expression of iron-sulfur cluster assembly 1 (ISCA1, an essential regulatory factor for mitochondrial respiration) in the brain of APP/PS1 mice. In vivo and in vitro studies revealed that iTBS modulates mitochondrial iron-sulfur cluster assembly to facilitate mitochondrial respiration and function, which is required for ISCA1. Moreover, iTBS rescues cognitive decline and attenuates AD-type pathologies in APP/PS1 mice. The present study uncovers a novel mechanism by which iTBS modulates mitochondrial respiration and function via ISCA1-mediated iron-sulfur cluster assembly to alleviate cognitive impairments and pathologies in AD. We provide the mechanistic target of iTBS that warrants its therapeutic potential for AD patients.
Humans
;
Mice
;
Animals
;
Transcranial Magnetic Stimulation
;
Alzheimer Disease/therapy*
;
Cognitive Dysfunction/therapy*
;
Cognition
;
Sulfur
;
Iron
;
Iron-Sulfur Proteins
;
Mitochondrial Proteins
4.Mechanism of ferroptosis in chronic heart failure based on theory of "harmful hyperactivity and responding inhibition".
Fei WANG ; Kun LIAN ; Zhi-Xi HU ; Si-Yuan HU
China Journal of Chinese Materia Medica 2023;48(17):4803-4811
Chronic heart failure is the end stage of heart diseases caused by multiple causes. Myocardial cell injury is the key cause of cardiac function deterioration. Ferroptosis, an iron-dependent programmed death mode, is characterized by iron overload and excessive accumulation of lipid peroxides. Studies have demonstrated that inhibiting ferroptosis has a protective effect on myocardial cells. The theory of "harmful hyperactivity and responding inhibition" is an important rule developed by physicians to explain the generation and restriction of the five elements and the pathological imbalance of the human body, and can guide medication. Correlating with the nature, humans need to rely on the law of responding inhibition to maintain the harmony of five Zang-organs and the steady state of Fu-organs. The pathogenesis of ferroptosis in chronic heart failure highly coincides with the process of failing to "inhibition and hyperactivity becoming harmful". The initial factor of ferroptosis is the deficiency of heart Qi, which results in the inability to maintain the balance of cardiomyocyte redox system. The involvement of the five Zang-organs leads to the loss of distribution of body fluid and blood. As a result, the phlegm turbidity, blood stasis, and water retention in the meridians occur, which are manifested as the accumulation of iron and lipid peroxides, which is the aggravating factor of ferroptosis. The two factors interact with each other, leading to the spiral development and thus aggravating heart failure. According to the traditional Chinese medicine(TCM) pathogenesis of ferroptosis, the authors try to treat the chronic heart failure by stages in accordance with the general principle of restraining excess and alleviating hyperactivity. The early-stage treatment should "nourish heart Qi, regulate the five Zang-organs, so as to restrain excess". The middle-stage treatment should "active blood, resolve phlegm, dispel pathogen, and eliminate turbidity", so as to alleviate hyperactivity. The late-stage treatment should "warm Yang, replenish Qi, active blood, and excrete water". Following the characteristics of pathogenesis, the TCM intervention can reduce iron accumulation and promote the clearance of lipid peroxide, thus inhibiting ferroptosis and improving cardiac function.
Humans
;
Ferroptosis
;
Lipid Peroxides
;
Medicine, Chinese Traditional
;
Heart Failure/drug therapy*
;
Chronic Disease
;
Iron
;
Water
5.Pathogenesis of chronic heart failure in rats based on ferroptosis-mediated oxidative stress and intervention effect of Shenfu Injection.
Zi-Yi WANG ; Qian ZHANG ; Jin GUO ; Shu-Min HUANG ; Li-Chong MENG ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2023;48(19):5285-5293
This study aims to investigate the pathogenesis of chronic heart failure based on ferroptosis-mediated oxidative stress and predict the targets of Shenfu Injection in treating chronic heart failure. A rat model of chronic heart failure was established by the isoproterenol induction method. According to the random number table method, the modeled rats were assigned into three groups: a model group, a Shenfu Injection group, and a ferrostatin-1(ferroptosis inhibitor) group. In addition, a normal group was designed. After 15 days of intervention, the cardiac mass index and left ventricular mass index were determined. Echocardiography was employed to eva-luate the cardiac function. Hematoxylin-eosin staining and Masson staining were employed to reveal the pathological changes and fibrosis of the heart, and Prussian blue staining to detect the aggregation of iron ions in the myocardial tissue. Transmission electron microscopy was employed to observe the mitochondrion ultrastructure in the myocardial tissue. Colorimetry was adopted to measure the levels of iron metabolism, lipid peroxidation, and antioxidant indicators. Flow cytometry was employed to measure the content of lipid-reactive oxygen species(ROS) and the fluorescence intensity of ROS. Western blot and RT-qPCR were employed to determine the protein and mRNA levels, respectively, of ferroptosis-related factors in the myocardial tissue. The results showed that the rats in the model group had reduced cardiac function, elevated levels of total iron and Fe~(2+), lowered level of glutathione(GSH), increased malondialdehyde(MDA), decreased superoxide dismutase(SOD) and glutathione peroxidase(GSH-Px), and rising levels of ROS and lipid-ROS. In addition, the model group showed fibrous tissue hyperplasia with inflammatory cell infiltration and myocardial fibrosis, iron ion aggregation, and characteristic mitochondrial changes specific for iron death. Moreover, the model group showcased upregulated protein and mRNA levels of p53 and COX2 and downregulated protein and mRNA levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. The intervention with Shenfu Injection significantly improved the cardiac function, recovered the iron metabolism, lipid peroxidation, and antioxidant indicators, decreased iron deposition, improved mitochondrial structure and function, and alleviated inflammatory cell infiltration and fibrosis. Furthermore, Shenfu Injection downregulated the mRNA and protein levels of p53 and COX2 and upregulated the mRNA and protein levels of GPX4, FTH1, SLC7A11, and Nrf2 in the myocardial tissue. Shenfu Injection can improve the cardiac function by regulating iron metabolism, inhibiting ferroptosis, and reducing oxidative stress injury.
Animals
;
Rats
;
Antioxidants
;
Reactive Oxygen Species
;
Cyclooxygenase 2
;
Ferroptosis
;
NF-E2-Related Factor 2
;
Tumor Suppressor Protein p53
;
Heart Failure/genetics*
;
Oxidative Stress
;
Chronic Disease
;
Glutathione
;
Fibrosis
;
Iron
;
RNA, Messenger
;
Lipids
6.Screening and expression analysis of transcription factors involved in genuineness of Codonopsis pilosula in Shanxi.
Yu-Jia ZHAI ; Jun-Li DAI ; Xing LIU ; Xing-Rui TIAN ; Jiao-Jiao JI ; Jian-Ping GAO
China Journal of Chinese Materia Medica 2023;48(21):5779-5789
This study aims to mine the transcription factors that affect the genuineness of Codonopsis pilosula in Shanxi based on the transcriptome data of C. pilosula samples collected from Shanxi and Gansu, and then analyze the gene expression patterns, which will provide a theoretical basis for the molecular assisted breeding of C. pilosula. Gene ontology(GO) functional annotation, conserved motif prediction, and gene expression pattern analysis were performed for the differential transcription factors predicted based on the transcriptome data of C. pilosula from different habitats. A total of 61 differentially expressed genes(DEGs) were screened out from the transcriptome data. Most of the DEGs belonged to AP2/ERF-ERF family, with the conserved motif of [2X]-[LG]-[3X]-T-[3X]-[AARAYDRAA]-[3X]-[RG]-[2X]-A-[2X]-[NFP]. Forty-three of the DEGs showed significantly higher gene expression in C. pilosula samples from Shanxi than in the samples from Gansu, including 11 genes in the AP2/ERF-ERF family, 5 genes in the NAC fa-mily, 1 gene in the bHLH family, and 2 genes in the RWP-RK family, while 18 transcription factors showed higher expression levels in the samples from Gansu. GO annotation predicted that most of the DEGs were enriched in GO terms related to transcriptional binding activity(103), metabolic process(26), and stress response(23). The expression of transcription factor genes, CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 was higher in the samples from Shanxi and in the roots of C. pilosula. CpNAC92, CpbHLH128, and CpRAP2-7 responded to the low temperature, temperature difference, and iron stresses, while CpNAC100 only responded to low temperature and iron stresses. The screening and expression analysis of the specific transcription factors CpNAC92, CpNAC100, CpbHLH128, and CpRAP2-7 in C. pilosula in Shanxi laid a theoretical foundation for further research on the mechanism of genuineness formation of C. pilosula.
Codonopsis/chemistry*
;
Transcription Factors/genetics*
;
Gene Expression Profiling
;
Transcriptome
;
Iron
7.Relationship between Iron Metabolic Parameters and Platelet Counts in Blood Donors.
Wen-Juan ZHONG ; Qiu-Fang ZHANG ; Cheng-Yong HUANG ; Ying-Chun CHEN ; Ye-Ping ZHOU ; Jin-Ying CHEN ; Jia ZENG
Journal of Experimental Hematology 2023;31(5):1481-1485
OBJECTIVE:
To investigate the correlation of iron metabolic parameters with platelet counts in blood donors.
METHODS:
A total of 400 blood donors who met requirements of apheresis platelet donation were collected, and their hematological parameters were analyzed. The donors were divided into low ferritin group and normal group, the differences of hematological parameters between the two groups were compared, and the correlation of iron metabolic parameters and routine hematology parameters with platelet counts were analyzed.
RESULTS:
Whether male or female, low ferritin group had higher platelet counts than normal group (P < 0.01). Among the iron metabolic parameters, the platelet counts was negatively correlated with serum ferritin (SF), serum iron (SI), and transferrin saturation (TSAT) (r =-0.162, r =-0.153, r =-0.256), and positively correlated with total iron binding capacity (TIBC) and unsaturated iron binding capacity (UIBC) (r =0.219, r =0.294) in female blood donors. Platelet counts was also negatively correlated with SF, SI and TSAT (r =-0.188, r =-0.148, r =-0.224) and positively correlated with UIBC (r =0.220) in male blood donors. Among the routine hematology parameters, platelet counts was negatively correlated with mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and reticulocyte hemoglobin equivalent (Ret-He) in female blood donors (r =-0.236, r =-0.267, r =-0.213, r =-0.284). Platelet counts was also negatively correlated with MCH, MCHC and Ret-He in male blood donors (r =-0.184, r =-0.221, r =-0.209).
CONCLUSION
In blood donors with low C-reactive protein level, the lower the iron store capacity, the lower the iron utilization, and the platelet counts tends to rise.
Male
;
Humans
;
Female
;
Iron/metabolism*
;
Blood Donors
;
Platelet Count
;
Anemia, Iron-Deficiency
;
Hemoglobins
;
Ferritins
8.Research Progress of Iron Metabolism in Disease Progression and Drug Resistance of Multiple Myeloma--Review.
Yan-Ying LI ; Liu-Yun ZHANG ; Yun-Hui XIANG ; Juan ZHANG
Journal of Experimental Hematology 2023;31(6):1916-1920
Iron metabolism is involved in the development and drug resistance of many malignancies, including multiple myeloma (MM). Based on recent studies on iron metabolism and MM, this paper reviews the relationship between iron metabolism and disease process of MM in terms of iron overload leading to ferroptosis in MM cells, the role of iron deficiency in oxidative respiration and proliferation of MM cells, and the interaction between ferroptosis and autophagy in the disease process. The mechanisms by which iron metabolism-related substances lead to MM cells' resistance to proteasome inhibitors (PI) through inducing redox imbalance and M2 macrophage polarization are also briefly described, aiming to provide a theoretical basis for the application of iron metabolism-related drugs to the clinical treatment of MM patients.
Humans
;
Autophagy
;
Disease Progression
;
Iron/metabolism*
;
Multiple Myeloma
;
Drug Resistance, Neoplasm
9.Research Progress of Nrf2 and Ferroptosis in Tumor Drug Resistance.
Shuning HU ; Xinru ZOU ; Yixuan FANG ; Chengrui LIU ; Rui CHEN ; Lili JI
Chinese Journal of Lung Cancer 2023;26(10):765-773
Lung cancer is one of the most common cancers in the world, and its treatment strategy is mainly surgery combined with radiotherapy and chemotherapy. However, long-term chemotherapy will result in drug resistance, which is also one of the difficulties in the treatment of lung cancer. Ferroptosis is an iron-dependent and lipid peroxidation-driven non-apoptotic cell death cascade, occurring when there is an imbalance of redox homeostasis in the cell. Nuclear factor erythroid 2-related factor 2 (Nrf2) is key for cellular antioxidant responses. Numerous studies suggest that Nrf2 assumes an extremely important role in regulation of ferroptosis, for its various functions in iron, lipid, and amino acid metabolism, and so on. In this review, a brief overview of the research progress of ferroptosis over the past decade will be presented. In particular, the mechanism of ferroptosis and the regulation of ferroptosis by Nrf2 will be discussed, as well as the role of the Nrf2 pathway and ferroptosis in tumor drug resistance, which will provide new research directions for the treatment of drug-resistant lung cancer patients.
.
Humans
;
Ferroptosis
;
NF-E2-Related Factor 2/genetics*
;
Lung Neoplasms/genetics*
;
Drug Resistance, Neoplasm
;
Iron
10.Role of Nrf2/GPX4 mediated ferroptosis in intestinal injury in sepsis.
Tao MA ; Weiwei HUANG ; Zhihua LI ; Yi WANG ; Xiaoming GAO ; Xiangyou YU
Chinese Critical Care Medicine 2023;35(11):1188-1194
OBJECTIVE:
To investigate whether ferroptosis exists in sepsis induced intestinal injury, and to verify the association between ferroptosis in sepsis induced intestinal injury and intestinal inflammation and barrier function by stimulating and inhibiting the nuclear factor E2-related factor 2/glutathione peroxidase 4 (Nrf2/GPX4) pathway.
METHODS:
Forty-eight SPF grade male Sprague-Darvley (SD) rats with a body weight of 220-250 g were divided into sham operation group (Sham group), sepsis group (CLP group), sepsis+iron chelating agent deferoxamine (DFO) group (CLP+DFO group) and sepsis+ferroptosis inducer Erastin group (CLP+Erastin group) using a random number table method, with 12 rats in each group. The sepsis model was established by cecal ligation and puncture (CLP). The Sham group was only performed with abdominal opening and closing operations. After modeling, the CLP+DFO group received subcutaneous injection of 20 mg/kg of DFO, the CLP+Erastin group was intraperitoneally injected with 20 mg/kg of Erastin. Each group received subcutaneous injection of 50 mg/kg physiological saline for fluid resuscitation after surgery, and the survival status of the rats was observed 24 hours after surgery. At 24 hours after model establishment, 6 rats in each group were selected. First, live small intestine tissue was taken for observation of mitochondrial morphology in smooth muscle cells under transmission electron microscopy and determination of reactive oxygen species (ROS). Then, blood was collected from the abdominal aorta and euthanized. The remaining 6 rats were sacrificed after completing blood collection from the abdominal aorta, and then small intestine tissue was taken. Western blotting was used to detect the expression of intestinal injury markers such as Claudin-1 and ferroptosis related proteins GPX4 and Nrf2. Observe the pathological changes of small intestine tissue using hematoxylin-eosin (HE) staining and complete Chiu score; Detection of tumor necrosis factor-α (TNF-α), interleukins (IL-1β, IL-6) levels in serum using enzyme-linked immunosorbent assay (ELISA). The levels of serum iron ions (Fe3+), malondialdehyde (MDA), and D-lactate dehydrogenase (D-LDH) were measured.
RESULTS:
(1) Compared with the Sham group, the 24-hour survival rate of rats in the CLP group and CLP+Erastin group significantly decreased (66.7%, 50.0% vs. 100%, both P < 0.05), while there was no significant difference in the CLP+DFO group (83.3% vs. 100%, P = 0.25). (2) Western blotting results showed that compared with the Sham group, the expressions of GPX4 and Claudin-1 in the small intestine tissue of the CLP group, CLP+DFO group, and CLP+Erastin group decreased significantly, while the expression of Nrf2 increased significantly (GPX4/β-actin: 0.56±0.02, 1.03±0.01, 0.32±0.01 vs. 1.57±0.01, Claudin-1/β-actin: 0.60±0.04, 0.96±0.07, 0.41±0.01 vs. 1.40±0.01, Nrf2/β-actin: 0.88±0.02, 0.72±0.01, 1.14±0.01 vs. 0.43±0.02, all P < 0.05). Compared with the CLP group, the expressions of GPX4 and Claudin-1 were significantly increased in the CLP+DFO group, while the expression of Nrf2 was significantly reduced. In the CLP+Erastin group, the expressions of GPX4 and Claudin-1 further decreased, while the expression of Nrf2 further increased (all P < 0.05). (3) Under the light microscope, compared with the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group showed structural disorder in the small intestinal mucosa and submucosal tissue, significant infiltration of inflammatory cells, and destruction of glandular and villous structures. The Chui score was significantly higher (3.25±0.46, 2.00±0.82, 4.50±0.55 vs. 1.25±0.45, all P < 0.05). (4) Under transmission electron microscopy, compared with the Sham group, the mitochondria in the other three groups of small intestinal smooth muscle cells showed varying degrees of volume reduction, increased membrane density, and reduced or disappeared cristae. The CLP+Erastin group showed the most significant changes, while the CLP+DFO group showed only slight changes in mitochondrial morphology. (5) Compared to the Sham group, the CLP group, CLP+DFO group, and CLP+Erastin group had serum levels of TNF-α, IL-1β, IL-6, MDA, D-LDH, and ROS in small intestine tissue were significantly increased, while the serum Fe3+ content was significantly reduced [TNF-α (ng/L): 21.49±1.41, 17.24±1.00, 28.66±2.72 vs. 14.17±1.24; IL-1β (ng/L): 108.40±3.09, 43.19±8.75, 145.70±11.00 vs. 24.50±5.55; IL-6 (ng/L): 112.50±9.76, 45.90±6.52, 151.80±9.38 vs. 12.89±6.11; MDA (μmol/L): 5.61±0.49, 3.89±0.28, 8.56±1.17 vs. 1.86±0.41; D-LDH (kU/L): 39.39±3.22, 25.38±2.34, 53.29±10.53 vs. 10.79±0.52; ROS (fluorescence intensity): 90 712±6 436, 73 278±4 775, 110 913±9 287 vs. 54 318±2 226; Fe3+ (μmol/L): 22.19±1.34, 34.05±1.94, 12.99±1.08 vs. 51.74±11.07; all P < 0.05]. Compared with CLP group, the levels of TNF-α, IL-1β, IL-6, MDA, D-LDH and ROS in CLP+Erastin group were further increased, and the content of Fe3+ was further decreased, the CLP+DFO group was the opposite (all P < 0.05).
CONCLUSIONS
Ferroptosis exists in the intestinal injury of septic rats, and stimulating or inhibiting ferroptosis through the Nrf2/GPX4 pathway can effectively intervene in the inflammatory state and intestinal mechanical barrier of the body.
Rats
;
Male
;
Animals
;
NF-E2-Related Factor 2
;
Tumor Necrosis Factor-alpha
;
Ferroptosis
;
Reactive Oxygen Species
;
Actins
;
Claudin-1
;
Interleukin-6
;
Sepsis/metabolism*
;
Iron

Result Analysis
Print
Save
E-mail