1.Effect of pH on the chelation between strontium ions and decellularized small intestinal submucosal sponge scaffolds.
Yu Ke LI ; Mei WANG ; Lin TANG ; Yu Hua LIU ; Xiao Ying CHEN
Journal of Peking University(Health Sciences) 2023;55(1):44-51
OBJECTIVE:
To investigate the preparation of decellularized small intestinal submucosa (dSIS) sponge scaffolds with chelated strontium (Sr) ions at different pH values, and to select the appropriate pH values for synthesizing Sr/dSIS scaffolds using the physicochemical properties and biocompatibility of the scaffolds as evaluation indexes.
METHODS:
(1) Sr/dSIS scaffolds preparation and grouping: After mixing dSIS solution and strontium chloride solution in equal volumes, adjusting pH of the solution to 3, 5, 7, and 9 respectively, porous scaffolds were prepared by freeze-drying method after full reaction at 37℃, which were named Sr/dSIS-3, -5, -7, and -9 respectively, and the dSIS scaffolds were used as the control group. (2) Physicochemical property evaluation: The bulk morphology of the scaffolds was observed in each group, the microscopic morphology analyzed by scanning electron microscopy, and the porosity and pore size determined, the surface elements analyzed by energy spectroscopy, the structure of functional groups analyzed by infrared spectroscopy, the chelation rate determined by atomic spectrophotometry, the water absorption rate detected by using specific gravity method, and the compression strength evaluated by universal mechanical testing machine.(3) Biocompatibility evaluation: The cytotoxicity and proliferative effect to bone mesenchymal stem cells (BMSCs) of each group were evaluated by Calcein-AM/PI double staining method.
RESULTS:
Scanning electron microscopy showed that the scaffolds of each group had an interconnected three-dimensional porous structure with no statistical difference in pore size and porosity. Energy spectrum analysis showed that strontium could be detected in Sr/dSIS-5, -7 and -9 groups, and strontium was uniformly distributed in the scaffolds. Functional group analysis further supported the formation of chelates in the Sr/dSIS-5, -7 and -9 groups. Chelation rate analysis showed that the Sr/dSIS-7 group had the highest strontium chelation rate, which was statistically different from the other groups (P < 0.05). The scaffolds in all the groups had good water absorption. The scaffolds in Sr/dSIS-5, -7 and -9 groups showed significantly improved mechanical properties compared with the control group (P < 0.05). The scaffolds in all the groups had good biocompatibility, and the Sr/dSIS-7 group showed the best proliferation of BMSCs.
CONCLUSION
When pH was 7, the Sr/dSIS scaffolds showed the highest strontium chelation rate and the best proliferation effect of BMSCs, which was the ideal pH value for the preparation of the Sr/dSIS scaffolds.
Tissue Scaffolds/chemistry*
;
Biocompatible Materials
;
Strontium/pharmacology*
;
Ions
;
Hydrogen-Ion Concentration
;
Tissue Engineering/methods*
;
Porosity
2.Expression and characterization of mesophilic GH1 β-glucosidase CdBglA from acidophilic Cuniculiplasma divulgatum.
Jinjian HE ; Fengfei SHEN ; Xinhan LIU ; Tianjun YANG ; Baotong LI ; Pengjun SHI ; Huiqin LIU ; Wanning ZENG
Chinese Journal of Biotechnology 2023;39(11):4694-4707
β-glucosidase has important applications in food, pharmaceutics, biomass conversion and other fields, exploring β-glucosidase with strong adaptability and excellent properties thus has received extensive interest. In this study, a novel glucosidase from the GH1 family derived from Cuniculiplasma divulgatum was cloned, expressed, and characterized, aiming to find a better β-glucosidase. The amino acid sequences of GH1 family glucosidase derived from C. divulgatum were obtained from the NCBI database, and a recombinant plasmid pET-30a(+)-CdBglA was constructed. The recombinant protein was induced to express in Escherichia coli BL21(DE3). The enzymatic properties of the purified CdBglA were studied. The molecular weight of the recombinant CdBglA was 56.0 kDa. The optimum pH and temperature were 5.5 and 55 ℃, respectively. The enzyme showed good pH stability, 92.33% of the initial activity could be retained when treated under pH 5.5-11.0 for 1 h. When pNPG was used as a substrate, the kinetic parameters Km, Vmax and Kcat/Km were 0.81 mmol, 291.99 μmol/(mg·min), and 387.50 s-1 mmol-1, respectively. 90.33% of the initial enzyme activity could be retained when CdBglA was placed with various heavy metal ions at a final concentration of 5 mmol/L. The enzyme activity was increased by 28.67% under 15% ethanol solution, remained unchanged under 20% ethanol, and 43.68% of the enzyme activity could still be retained under 30% ethanol. The enzyme has an obvious activation effect at 0-1.5 mol/L NaCl and can tolerate 0.8 mol/L glucose. In conclusion, CdBglA is an acidic and mesophilic enzyme with broad pH stability and strong tolerance to most metal ions, organic solvents, NaCl and glucose. These characteristics may facilitate future theoretical research and industrial production.
beta-Glucosidase
;
Sodium Chloride
;
Temperature
;
Glucose
;
Ethanol/chemistry*
;
Ions
;
Hydrogen-Ion Concentration
;
Enzyme Stability
;
Substrate Specificity
3.Qualitative and Quantitative Analysis of Five Indoles or Indazole Amide Synthetic Cannabinoids in Suspected E-Cigarette Oil by GC-MS.
Cui-Mei LIU ; Wei JIA ; Chun-Hui SONG ; Zhen-Hua QIAN ; Zhen-Dong HUA ; Yue-Meng CHEN
Journal of Forensic Medicine 2023;39(5):457-464
OBJECTIVES:
To establish the GC-MS qualitative and quantitative analysis methods for the synthetic cannabinoids, its main matrix and additives in suspicious electronic cigarette (e-cigarette) oil samples.
METHODS:
The e-cigarette oil samples were analyzed by GC-MS after diluted with methanol. Synthetic cannabinoids, its main matrix and additives in e-cigarette oil samples were qualitatively analyzed by the characteristic fragment ions and retention time. The synthetic cannabinoids were quantitatively analyzed by using the selective ion monitoring mode.
RESULTS:
The linear range of each compound in GC-MS quantitative method was 0.025-1 mg/mL, the matrix recovery rate was 94%-103%, the intra-day precision relative standard deviations (RSD) was less than 2.5%, and inter-day precision RSD was less than 4.0%. Five indoles or indazole amide synthetic cannabinoids were detected in 25 e-cigarette samples. The main matrixes of e-cigarette samples were propylene glycol and glycerol. Additives such as N,2,3-trimethyl-2-isopropyl butanamide (WS-23), glycerol triacetate and nicotine were detected in some samples. The content range of synthetic cannabinoids in 25 e-cigarette samples was 0.05%-2.74%.
CONCLUSIONS
The GC-MS method for synthesizing cannabinoid, matrix and additive in e-cigarette oil samples has good selectivity, high resolution, low detection limit, and can be used for simultaneous qualitative and quantitative analysis of multiple components; The explored fragment ion fragmentation mechanism of the electron bombardment ion source of indole or indoxamide compounds helps to identify such substances or other compounds with similar structures in cases.
Gas Chromatography-Mass Spectrometry/methods*
;
Electronic Nicotine Delivery Systems
;
Illicit Drugs/analysis*
;
Indazoles/chemistry*
;
Glycerol/analysis*
;
Cannabinoids
;
Indoles/chemistry*
;
Ions
4.A 3D-printed molybdenum-containing scaffold exerts dual pro-osteogenic and anti-osteoclastogenic effects to facilitate alveolar bone repair.
Beimin TIAN ; Xuan LI ; Jiujiu ZHANG ; Meng ZHANG ; Dian GAN ; Daokun DENG ; Lijuan SUN ; Xiaotao HE ; Chengtie WU ; Faming CHEN
International Journal of Oral Science 2022;14(1):45-45
The positive regulation of bone-forming osteoblast activity and the negative feedback regulation of osteoclastic activity are equally important in strategies to achieve successful alveolar bone regeneration. Here, a molybdenum (Mo)-containing bioactive glass ceramic scaffold with solid-strut-packed structures (Mo-scaffold) was printed, and its ability to regulate pro-osteogenic and anti-osteoclastogenic cellular responses was evaluated in vitro and in vivo. We found that extracts derived from Mo-scaffold (Mo-extracts) strongly stimulated osteogenic differentiation of bone marrow mesenchymal stem cells and inhibited differentiation of osteoclast progenitors. The identified comodulatory effect was further demonstrated to arise from Mo ions in the Mo-extract, wherein Mo ions suppressed osteoclastic differentiation by scavenging reactive oxygen species (ROS) and inhibiting mitochondrial biogenesis in osteoclasts. Consistent with the in vitro findings, the Mo-scaffold was found to significantly promote osteoblast-mediated bone formation and inhibit osteoclast-mediated bone resorption throughout the bone healing process, leading to enhanced bone regeneration. In combination with our previous finding that Mo ions participate in material-mediated immunomodulation, this study offers the new insight that Mo ions facilitate bone repair by comodulating the balance between bone formation and resorption. Our findings suggest that Mo ions are multifunctional cellular modulators that can potentially be used in biomaterial design and bone tissue engineering.
Bone Regeneration
;
Cell Differentiation
;
Ions/pharmacology*
;
Molybdenum/pharmacology*
;
Osteoclasts
;
Osteogenesis
;
Printing, Three-Dimensional
;
Tissue Scaffolds/chemistry*
5.Determination of Salt Forms of New Psychoactive Substances by Ion Chromatography.
Yue Meng CHEN ; Zhen Dong HUA ; Cui Mei LIU ; Wei JIA ; Yan WANG ; Shan LIU
Journal of Forensic Medicine 2021;37(4):500-504
Objective To establish an ion chromatography method for the salt form determination of new psychoactive substances (NPS). Methods The method of conducting qualitative and quantitative analysis of six types of organic acid ions (acetate ion, tartrate ion, maleate ion, oxalate ion, fumarate ion, citrate ion) and five types of inorganic anions (fluoride ion, chloride ion, nitrate ion, sulfate ion, phosphate ion) in NPS sample by ion chromatography was developed. The salt forms of 222 seized NPS samples (103 samples with synthetic cannabinoids, 81 samples with cathinones, 44 samples with phenylethylamines, 12 samples with tryptamines, 7 samples with phencyclidines, 6 samples with piperazines, 2 samples with aminoindenes, 26 samples with fentanyls and 43 samples with other types of NPS) were analyzed by this method. Results Each anion had good linearity in the corresponding linear range, the correlation coefficients (r) were greater than 0.999, the limits of detection were 0.01-0.05 mg/L, and the limits of quantitative were 0.1-0.5 mg/L. Except that 5F-BEPIRAPIM was hydrochloride, the salt forms of the other 102 synthetic cannabinoids were all base. The salt form of 81 cathinone samples, 44 phenylethylamine samples, 7 phencyclidine samples and 2 aminoindene samples were all hydrochloride. The salt forms of tryptamine samples included base, hydrochloride, fumarate and oxalate. The salt forms of piperazine samples included base and hydrochloride. The salt forms of fentanyl samples and samples of other types included base, hydrochloride and citrate. Conclusion Ion chromatography is a simple, accurate and efficient method for determining the salt form of NPS samples, which makes the qualitative and quantitative conclusions of NPS more scientific and rigorous.
Chromatography, Liquid
;
Gas Chromatography-Mass Spectrometry
;
Ions
;
Psychotropic Drugs/chemistry*
6.Effects of SCD-1 gene overexpression on the content of calcium ion and lipids in duck uterine epithelial cells.
Jiezhang LI ; Hualun LUO ; Guanghui TAN ; Lei WU ; Yuanyu QIN ; Yiyu ZHANG
Chinese Journal of Biotechnology 2020;36(5):899-907
Stearoyl-CoAdesaturase-1 (SCD-1) is a key regulator of monounsaturated fatty acid synthesis. It plays a vital role in lipid synthesis and metabolism. Ca²⁺ is an important cation in the body and plays an important role in the organism. The aims of this study were to investigate the correlation of SCD-1 gene overexpression with lipid indexes and calcium ion level. The pcDNA3.1 (+) + SCD-1 +Flag eukaryotic expression vector and cultured duck uterine epithelial cells were co-transfected. The overexpression of SCD-1 gene was measured using the Flag Label Detection Kit. Ca ions and lipid contents were detected through Fluo-3/AM Calcium Ion Fluorescence Labeling method and Lipid Measuring Kit, respectively. SCD-1 gene overexpression was negatively correlated with triglyceride (TG) and high-density lipoprotein cholesterol (HDL-C), and positively correlated with Ca ion, total cholesterol (TC), very low-density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels. Meanwhile, Ca ion was positively correlated with TG, LDL-C and HDL-C contents, and negatively correlated with TC and VLDL-C levels. Overexpression of SCD-1 gene could regulate Ca ion secretion, as well as lipid synthesis and transport in duck uterine epithelial cells.
Animals
;
Calcium
;
metabolism
;
Coenzyme A Ligases
;
genetics
;
Ducks
;
Epithelial Cells
;
chemistry
;
enzymology
;
Gene Expression
;
Ions
;
Lipids
;
genetics
;
Triglycerides
;
metabolism
7.Ion Abundance Ratios of Qualitative Analysis by GC-MS of 4 Common Drugs (Poisons.
Shao Dan LIU ; Tao MIN ; Guo Bin XIN ; Da Ming ZHANG
Journal of Forensic Medicine 2019;35(6):687-694
Objective To investigate the maximum allowable deviation of ion abundance ratios of characteristic fragment ions in common drugs (poisons) in blood by gas chromatography-mass spectrometry (GC-MS) method. Methods Four common drugs (poisons) (dichlorvos, phorate, diazepam and estazolam) were detected by GC-MS full scan mode after liquid-liquid extraction in two laboratories and under three chromatographic conditions. The deviations of ion abundance ratios of the four common drugs (poisons) in marked blood samples with concentrations of 0.5, 1.0, 2.0, 5.0 and 10.0 μg/mL were analyzed. At the same time, the false negative rates of ion abundance ratios were analyzed when the mass concentration was limit of detection (LOD), 2LOD, limit of quantitation (LOQ) and 2LOQ, and the false positive rates of ion abundance ratios were analyzed with blank blood samples. Results Under the two laboratories, four common drugs (poisons) and three kinds of chromatography conditions, the differences in deviations of the ion abundance ratios of marked blood samples were not statistically significant (P>0.05). More than 95% of the absolute deviations of the ion abundance ratios of the marked blood samples were within the range of ±10%, and more than 95% of the relative deviations were within the range of ±25%. In cases of low concentration (concentration less than 2LOQ) or low signal to noise ratio (3-15), the false negative rate was less than 5% and the false positive rate was 0% when the relative deviation was greater than 50%. Conclusion The absolute deviations of ion abundance ratios of four common drugs (poisons) in marked blood samples are advised to have a determination range within ±10%, and the determination range of relative deviations within ±25%.
Gas Chromatography-Mass Spectrometry
;
Humans
;
Ions/chemistry*
;
Limit of Detection
;
Liquid-Liquid Extraction
;
Poisons/blood*
8.Comprehensive mass spectrum analysis of two flavone-6,8-C-di-glycosides and its application by high resolution electrospray ionization tandem mass spectroscopy in both negative and positive ion modes.
Xuan-Xuan WANG ; Xiao-Bo LI ; Chong-Sheng PENG
China Journal of Chinese Materia Medica 2019;44(22):4880-4887
The tandem mass spectrum of apigenin-6,8-C-di-glucoside( 1) and apigenin-6-C-glucose-8-C-rhamnoside( 2) were obtained by high resolution electrospray ionization mass spectrometry( HR-ESI-MS/MS) in both positive and negative ion modes. The elemental composition of each ion was determined according to its accurate mass-to-charge,hence,the fragmentation pathways of each compound were proposed in both negative and positive ion modes. Comprehensive analysis of each ion and its proposed fragmentation pathways of the two compounds was initially conducted in both negative and positive ion mode HR-ESI-MS/MS to explore the diagnostic ions for flavone-6,8-C-di-glycosides and the characteristic ions for each compound and their cleavage rules. The results showed that a family of fragmentation ions with m/z 353,325,311,297 in ESI(-)-MS and m/z 355,325,307,295 in ESI( +)-MS could be the diagnostic ions of flavone-6,8-C-di-glycoside,and characteristic neutral loss could be assigned to glycosyl substitution,for example,neutral losses of C_4H_8O_4( 120),C_3H_6O_3( 90),C_2H_4O_2( 60) for glucoside substitution while neutral losses of C_4H_8O_3(104),C_3H_6O_2( 74),C_2H_4O( 44) for rhamnoside substitution. Furthermore,only one H_2O loss from mother ion( [M-H]-) was observed for 1 & 2 in ESI(-)-MS while five to six H2 O loss from mother ion( [M+H]+) was observed for 1 & 2 in ESI( +)-MS to produce a family of ions by subsequent loss of H_2O,which could be applied for glucosyl difference. The flavone-6,8-C-di-glycosides in both ESI( +)-MS and ESI(-)-MS showed the cleavage similarity at sugar substitutions. However,there were much more differences by the fragmentation pathways and neutral losses between ESI( +)-MS and ESI(-)-MS as following,hyperconjugation ions by subsequent loss of H_2O from precursor ions of flavone-6,8-C-di-glycosides in ESI( +)-MS were not observed in ESI(-)-MS; the subsequent neutral loss of CH_2O in ESI( +)-MS were rarely observed in ESI(-)-MS; the loss of CO only happen at C-ring of flavone ESI( +)-MS other than glycosyl position in ESI(-)-MS; the C4-chain neutral loss of flavone-6,8-C-di-glycosides happened at 8-C-glycosyl position other than at 6-C-glycosyl position. The above cleavage rules and diagnostic ions of ESI( +)-MS were successfully applied for the structure identification of 4 flavone-6 C,8 C-diglycosides from the stem extract of Dendrobium officinale as vicenin Ⅱ,vicenin Ⅰ,isoschaftoside,schaftoside as well as one flavone-O-glysoside named rutin,which were supported by ESI(-)-MS data as well.
Flavones/chemistry*
;
Glycosides/chemistry*
;
Ions
;
Spectrometry, Mass, Electrospray Ionization
;
Tandem Mass Spectrometry
9.Study of characteristic ions in frequently-used traditional Chinese medicinal materials derived from animal bile and its application.
Yan SHI ; Jing XIONG ; Feng WEI ; Shuang-Cheng MA
China Journal of Chinese Materia Medica 2018;43(4):651-658
A LC-MS method was established for study of characteristic ions in frequently-used traditional Chinese medicinal materials derived from animal bile. UPLC-Q-TOF was used in the data acquisition work, then, the software of MarkerLynxTM v.4.1 was performed in the chemometric analysis of data. Besides, selected ion chromatograms of these bile acid ions were comparative studied. Better results were gained in the specificity identification of pig bile, bear bile, cultivated cow-bezoar , artificial cow-bezoar and some compound preparations(Hugan tablet and Rengongniuhuang Jiaxiaozuo capsule) by this method. The method is suitable for the specificity identification of pig bile, bear bile, cultivated cow-bezoar , artificial cow-bezoar and compound preparations containing these medicinal materials.
Animals
;
Bezoars
;
Bile
;
chemistry
;
Cattle
;
Chromatography, High Pressure Liquid
;
Ions
;
chemistry
;
Mass Spectrometry
;
Medicine, Chinese Traditional
;
Species Specificity
;
Swine
;
Ursidae
10.Mass spectrometry guided strategy based on feature fragment ions for guided-separation on quinoline alkaloids from root barks of Dictamnus dasycarpus.
Xi-Xi GUO ; Qi-Rui BI ; Zhe WANG ; Ning-Hua TAN
China Journal of Chinese Materia Medica 2018;43(19):3887-3892
The root bark of Dictamnus dasycarpus is one of common traditional Chinese medicines (TCMs). Quinoline alkaloids are one of the main active substances in this TCM and possess many biological activities including anti-titumor, anti-inflammation, anti-bacteria, anti-oxidation, and anti-platelet aggregation activities. In this study, eight quinoline alkaloids 1-8 were firstly separated from the root barks of D. dasycarpus. It was difficult to isolate more quinoline alkaloids from the remaining fraction 8 in D. dasycarpus by this conventional chemical separation, so the target analysis method combined LC-MS guided-separation of quinoline alkaloids from fraction 8 was established. MS/MS fragmentation patterns of eight quinoline alkaloids reference standard compounds 1-8 were studied by ultra-performance liquid chromatography-electrospary ionization-mass spectrometry (UPLC-ESI-MS/MS). Based on the feature fragment ion 200, the parent ion scan mode was established for the target analysis of quinoline alkaloids in fraction 8. Finally, 8-methoxyflindersine (9) and N-metilatanina (10) were discovered and isolated quickly from fraction 8 guided by LC-MS, and their structures were identified by NMR and MS. Among them, compound 10 was isolated from the genus Dictamnus for the first time. These results indicated that this method is not only quick and sensitive for analyzing the quinoline alkaloids, but also to effectively guided-separate this kind of alkaloids in the root barks of D. dasycarpus.
Alkaloids
;
isolation & purification
;
Chromatography, High Pressure Liquid
;
Dictamnus
;
chemistry
;
Ions
;
Phytochemicals
;
isolation & purification
;
Plant Roots
;
chemistry
;
Quinolines
;
isolation & purification
;
Spectrometry, Mass, Electrospray Ionization
;
Tandem Mass Spectrometry

Result Analysis
Print
Save
E-mail