1.Establishment and application of a cell model for LRRC8A physiological characteristic study.
Yan-Hong ZHOU ; Kai ZHENG ; Zhong-Xue XIA ; Xiao-Ming JIANG ; Wen-Hui DI ; Lian-Xiu XU ; Chao YING ; Feng HAO
Acta Physiologica Sinica 2019;71(4):555-561
The aim of the present study was to establish a cell model of volume-regulated anion channel subunit LRRC8A and investigate the physiological characteristics of LRRC8A. The eukaryotic expression vectors of LRRC8A and YFP-H148Q/I152L were constructed and transfected into Fischer rat thyroid (FRT) cells by Lipofectamine 2000. The FRT cell lines co-expressing LRRC8A and YFP-H148Q/I152L were obtained by antibiotic screening. The expression of LRRC8A and YFP-H148Q/I152L in FRT cells was detected by the inverted fluorescence microscope. The fluorescence quenching kinetic experiment was done to verify the function and effectiveness of the cell model. Then the cell model was utilized to study the physiological characteristics of LRRC8A, such as the characteristics of anion transport, the opening of LRRC8A by osmotic pressure, the effect of anion transport velocity, and the effect of chloride channel inhibitors on LRRC8A anion channel. The results of the inverted fluorescence microscope showed that LRRC8A was expressed on the cell membrane and YFP-H148Q/I152L was expressed in the cytoplasm. The results of fluorescence quenching kinetic test showed that under the condition of low osmotic state, LRRC8A could transport some kinds of anions, such as iodine and chloride ions. Osmotic pressure played a key role in the regulation of LRRC8A volume-regulated anion channel opening. Chloride channel inhibitors inhibited ion transport of LRRC8A channel in a dose-dependent manner. It is suggested that LRRC8A has the characteristics of classic volume-regulated anion channels by using the cell model of FRT cells co-expressing LRRC8A and YFP-H148Q/I152L.
Animals
;
Anions
;
Cells, Cultured
;
Chloride Channels
;
antagonists & inhibitors
;
Ion Transport
;
Membrane Proteins
;
physiology
;
Microscopy, Fluorescence
;
Rats
;
Rats, Inbred F344
;
Thyroid Gland
;
cytology
;
Transfection
2.Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):383-388
Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.
Anthracenes
;
pharmacology
;
Chloride Channels
;
metabolism
;
Chlorides
;
agonists
;
antagonists & inhibitors
;
metabolism
;
Culture Media
;
metabolism
;
pharmacology
;
Dose-Response Relationship, Drug
;
Evoked Potentials
;
drug effects
;
physiology
;
Heart Atria
;
cytology
;
drug effects
;
metabolism
;
Humans
;
Hypotonic Solutions
;
metabolism
;
pharmacology
;
Indoles
;
pharmacology
;
Ion Transport
;
drug effects
;
Maleimides
;
pharmacology
;
Myocytes, Cardiac
;
cytology
;
drug effects
;
metabolism
;
Patch-Clamp Techniques
;
Phorbol 12,13-Dibutyrate
;
pharmacology
;
Primary Cell Culture
;
Protein Kinase C
;
metabolism
3.Progress in the physiological and pathophysiological functions of sodium calcium exchangers.
Jun-Jie SU ; Ge-Yao QI ; Xiao-Zhi DANG ; Nian YANG ; Jun ZHANG
Acta Physiologica Sinica 2014;66(2):241-251
Sodium calcium exchanger (NCX), which is widely expressed in the plasma membrane, mitochondrial membrane and secretory vesicles in diverse kinds of cells, belongs to a type of cation translocators. NCX works in two modes, the forward mode and reverse mode, to regulate the intracellular Ca(2+) concentration bi-directionally. In the forward mode, NCX carries Ca(2+) out of the cell against its electrochemical gradients coupled to the influx of Na(+) down its electrochemical gradients; alternatively, Ca(2+) enters through the reverse mode of NCX, and Na(+) is carried out of the cell. Exactly through the two-way modes, NCX can regulate intracellular Ca(2+) concentration fleetly and accurately, and plays a critical role in a series of physiological processes including intracellular signal transduction, growth and development of cells, excitation and its coupled functions of excitable cells. NCX are acknowledged to be involved in myofiber contraction, neurotransmission, migration and differentiation of neurogliocyte, activation of immune cells, secretion of cytokines and hormones etc. Moreover, abnormal activation of the reverse mode of NCX plays a vital role in many pathological processes including cell apoptosis, ischemia-reperfusion injury, insulin secretion, tumor etc. Here we reviewed the research status about the NCX's participation in some physiological and pathophysiological processes, so as to provide comprehensive understanding about its functions.
Animals
;
Apoptosis
;
Calcium
;
physiology
;
Humans
;
Ion Transport
;
Reperfusion Injury
;
physiopathology
;
Signal Transduction
;
Sodium
;
physiology
;
Sodium-Calcium Exchanger
;
physiology
4.Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.
Acta Physiologica Sinica 2014;66(1):16-22
The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.
Biological Transport
;
Cell Membrane
;
physiology
;
Chloride Channels
;
physiology
;
Cyclic AMP
;
physiology
;
Cytokines
;
immunology
;
Epithelial Cells
;
physiology
;
Epithelium
;
immunology
;
physiology
;
Humans
;
Ion Transport
;
Receptors, Purinergic P2Y
;
immunology
;
physiology
;
Signal Transduction
5.The influence of mitochondrial complex inhibition on neuronal ion channel and neurotransmitter release.
Acta Physiologica Sinica 2012;64(6):713-720
Mitochondrial complex inhibition has been described in the pathophysiology of many neurodegenerative diseases, and the functional changes of neuron induced by mitochondrial complex inhibition and the mechanism are concerned. Neuronal function depends on action potentials and neurotransmitter release. Voltage dependent sodium/potassium ion channels mediate generation of neuron action potentials. And voltage dependent calcium ion channels are directly involved in the process of neurotransmitter release. The functional changes of those ion channels under some pathological conditions can induce neuron dysfunction, even death. Therefore, understanding the influence of mitochondrial complex inhibition on neuronal ion channels and neurotransmitter release is helpful to illuminate the pathophysiology of neurodegenerative diseases. This review will highlight recent progress in this field.
Action Potentials
;
Biological Transport
;
Calcium Channels
;
physiology
;
Humans
;
Ion Channels
;
physiology
;
Mitochondria
;
physiology
;
Neurodegenerative Diseases
;
physiopathology
;
Neurons
;
physiology
;
Neurotransmitter Agents
;
physiology
;
Potassium Channels
;
physiology
;
Sodium Channels
;
physiology
;
Synaptic Transmission
6.Calcium regulation of nucleocytoplasmic transport.
Ashapurna SARMA ; Weidong YANG
Protein & Cell 2011;2(4):291-302
Bidirectional trafficking of macromolecules between the cytoplasm and the nucleus is mediated by the nuclear pore complexes (NPCs) embedded in the nuclear envelope (NE) of eukaryotic cell. The NPC functions as the sole pathway to allow for the passive diffusion of small molecules and the facilitated translocation of larger molecules. Evidence shows that these two transport modes and the conformation of NPC can be regulated by calcium stored in the lumen of nuclear envelope and endoplasmic reticulum. However, the mechanism of calcium regulation remains poorly understood. In this review, we integrate data on the observations of calciumregulated structure and function of the NPC over the past years. Furthermore, we highlight challenges in the measurements of dynamic conformational changes and transient transport kinetics in the NPC. Finally, an innovative imaging approach, single-molecule superresolution fluorescence microscopy, is introduced and expected to provide more insights into the mechanism of calcium-regulated nucleocytoplasmic transport.
Active Transport, Cell Nucleus
;
physiology
;
Animals
;
Calcium
;
metabolism
;
Cell Nucleus
;
metabolism
;
Cytoplasm
;
metabolism
;
Diffusion
;
Endoplasmic Reticulum
;
metabolism
;
Eukaryotic Cells
;
metabolism
;
Humans
;
Ion Transport
;
physiology
;
Microscopy, Fluorescence
;
Molecular Conformation
;
Nuclear Pore
;
chemistry
;
metabolism
;
Nuclear Pore Complex Proteins
;
chemistry
;
metabolism
;
Oocytes
;
cytology
;
metabolism
;
Signal Transduction
;
Xenopus laevis
7.The cytosolic domain of Bcl-2 oligomerizes to form pores in model mitochondrial outer membrane at acidic pH.
Jun PENG ; Suzanne M LAPOLLA ; Zhi ZHANG ; Jialing LIN
Journal of Biomedical Engineering 2009;26(3):631-637
The three dimensional structures of both pro-apoptotic Bax and anti-apoptotic Bcl-2 are strikingly similar to that of pore-forming domains of diphtheria toxin and E. coli colicins. Consistent with the structural similarity, both Bax and Bcl-2 have been shown to possess pore-forming property in the membrane. However, these pore-forming proteins form pores via different mechanisms. While Bax and diphtheria toxin form pores via oligomerization, the colicin pore is formed only by colicin monomers. Although the oligomers of Bcl-2 proteins have been found in the mitochondria of both healthy and apoptotic cells, it is unknown whether or not oligomerization is involved in the pore formation. To determine the mechanism of Bcl-2 pore formation, we reconstituted the pore-forming process of Bcl-2 using purified proteins and liposomes. We found that Bcl-2 pore size depended on Bcl-2 concentration, and the release of smaller entrapped molecules was faster than that of larger ones from liposomes at a given Bcl-2 concentration. Moreover, the rate of dye release mediated by pre-formed wild-type Bcl-2 oligomers or by the mutant Bcl-2 monomers with a higher homo-association affinity was much higher than that by wild-type Bcl-2 monomers. Together, it is suggested that oligomerization is likely involved in Bcl-2 pore formation.
Apoptosis
;
physiology
;
Cytosol
;
metabolism
;
Humans
;
Hydrogen-Ion Concentration
;
Liposomes
;
metabolism
;
Mitochondrial Membrane Transport Proteins
;
metabolism
;
Mitochondrial Membranes
;
metabolism
;
Protein Multimerization
;
Proto-Oncogene Proteins c-bcl-2
;
metabolism
8.Advances in the study of the microbial efflux pumps and its inhibitors development.
Quan-Xin LONG ; Pei-Fu ZHOU ; Zong-Hui WU ; Hong-Hai WANG ; Jian-Ping XIE
Acta Pharmaceutica Sinica 2008;43(11):1082-1088
Drug resistant bacteria is an increasingly urgent challenge to public health. Bacteria adaptation and extensive abuse of antibiotics contribute to this dilemma. Active efflux of antibiotics is employed by the bacteria to survive the antibiotic pressure. Efflux pump is one of the hot spots of current drug related studies and ideal targets for the improvement of treatment. The efflux pumps and related mechanisms of action, regulation of expression and methodologies were summarized. Comparative genomics analyses were employed to elucidate the underlying mechanisms of action and evolution of efflux pump as exemplified by the Mycobacterium in our lab, which is a crucial re-emerging threat to global public health. The pathway and state-of-art drug development of efflux pump related drugs are included too.
ATP-Binding Cassette Transporters
;
antagonists & inhibitors
;
drug effects
;
physiology
;
Anti-Bacterial Agents
;
metabolism
;
pharmacology
;
Bacteria
;
metabolism
;
Drug Resistance, Multiple, Bacterial
;
drug effects
;
genetics
;
Ion Pumps
;
antagonists & inhibitors
;
drug effects
;
physiology
;
Membrane Transport Proteins
;
drug effects
;
physiology
;
Multidrug Resistance-Associated Proteins
;
drug effects
;
physiology
;
Mycobacterium
;
metabolism
9.A probability wave theory on the ion movement across cell membrane.
Hui ZHANG ; Jiadong XU ; Zhongqi NIU
Journal of Biomedical Engineering 2007;24(2):257-261
The ionic quantity across the channel of the cell membrane decides the cell in a certain life state. The theory analysis that existed on the bio-effects of the electro-magnetic field (EMF) does not unveil the relationship between the EMF exerted on the cell and the ionic quantity across the cell membrane. Based on the cell construction, the existed theory analysis and the experimental results, an ionic probability wave theory is proposed in this paper to explain the biological window-effects of the electromagnetic wave. The theory regards the membrane channel as the periodic potential barrier and gives the physical view of the ion movement across cell-membrane. The theory revises the relationship between ion's energy in cell channel and the frequency exerted EMF. After the application of the concept of the wave function, the ionic probability across the cell membrane is given by the method of the quantum mechanics. The numerical results analyze the physical factors that influences the ion's movement across the cell membrane. These results show that the theory can explain the phenomenon of the biological window-effects.
Animals
;
Biological Transport, Active
;
Cell Membrane
;
physiology
;
radiation effects
;
Cell Membrane Permeability
;
physiology
;
radiation effects
;
Computer Simulation
;
Electromagnetic Fields
;
Ion Channels
;
metabolism
;
Ions
;
metabolism
;
Models, Biological
10.Heterogeneous Composition of Voltage-Dependent K+ Currents in Hepatic Stellate Cells.
Dong Hyeon LEE ; Kuchan KIMM ; Hyung Lae KIM ; Bok Ghee HAN
Yonsei Medical Journal 2007;48(4):684-693
PURPOSE: Hepatic stellate cells (HSC) are a type of pericyte with varying characteristics according to their location. However, the electrophysiological properties of HSC are not completely understood. Therefore, this study investigated the difference in the voltage-dependent K(+) currents in HSC. MATERIALS AND METHODS: The voltage-dependent K(+) currents in rat HSC were evaluated using the whole cell configuration of the patch-clamp technique. RESULTS: Four different types of voltage-dependent K(+) currents in HSC were identified based on the outward and inward K(+) currents. Type D had the dominant delayed rectifier K(+) current, and type A had the dominant transient outward K(+) current. Type I had an inwardly rectifying K(+) current, whereas the non-type I did not. TEA (5mM) and 4-AP (2mM) suppressed the outward K(+) currents differentially in type D and A. Changing the holding potential from -80 to -40mV reduced the amplitude of the transient outward K(+) currents in type A. The inwardly rectifying K(+) currents either declined markedly or were sustained in type I during the hyperpolarizing step pulses from -120 to -150mV. CONCLUSION: There are four different configurations of voltage-dependent K(+) currents expressed in cultured HSC. These results are expected to provide information that will help determine the properties of the K(+) currents in HSC as well as the different type HSC populations.
Animals
;
Cells, Cultured
;
Electric Conductivity/classification
;
Hepatocytes/*chemistry/classification
;
Ion Transport
;
Patch-Clamp Techniques
;
Potassium Channels, Voltage-Gated/*physiology
;
Rats

Result Analysis
Print
Save
E-mail