1.Oxidosqualene cyclases in triterpenoids biosynthesis: a review.
Cuiyu CHEN ; Yaru PANG ; Quanbing CHEN ; Chun LI ; Bo LÜ
Chinese Journal of Biotechnology 2022;38(2):443-459
Triterpenoids are one of the most diverse compounds in plant metabolites, and they have a wide variety of physiological activities and are of important economic value. Oxidosqualene cyclases catalyze the cyclization of 2, 3-oxidosqualene to generate different types of sterols and plant triterpenoids, which is of great significance to the structural diversity of natural products. However, the mechanism of the diversified cyclization of 2, 3-oxidosqualene catalyzed by oxidosqualene cyclases remains unclear. This review summarized the research progress of oxidosqualene cyclases from the aspects of catalytic function, molecular evolutionary relationship between genes and proteins, protein structure, molecular simulation and molecular calculations, which may provide a reference for protein engineering and metabolic engineering of triterpene cyclase.
Intramolecular Transferases/metabolism*
;
Metabolic Engineering
;
Plants/genetics*
;
Squalene/chemistry*
;
Triterpenes
2.Engineering the precursor supply pathway in Streptomyces gilvosporeus for overproduction of natamycin.
Dezhen KONG ; Hao LI ; Xiaojie LI ; Zhoujie XIE ; Hao LIU
Chinese Journal of Biotechnology 2022;38(12):4630-4643
Natamycin is a safe and efficient antimycotics which is widely used in food and medicine industry. The polyene macrolide compound, produced by several bacterial species of the genus Streptomyces, is synthesized by type Ⅰ polyketide synthases using acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA as substrates. In this study, four pathways potentially responsible for the supply of the three precursors were evaluated to identify the effective precursor supply pathway which can support the overproduction of natamycin in Streptomyces gilvosporeus, a natamycin-producing wild-type strain. The results showed that over-expressing acetyl-CoA synthetase and methylmalonyl-CoA mutase increased the yield of natamycin by 44.19% and 20.51%, respectively, compared with the wild type strain under shake flask fermentation. Moreover, the yield of natamycin was increased by 66.29% compared with the wild-type strain by co-overexpression of acetyl-CoA synthetase and methylmalonyl-CoA mutase. The above findings will facilitate natamycin strain improvement as well as development of strains for producing other polyketide compounds.
Natamycin/metabolism*
;
Methylmalonyl-CoA Mutase/metabolism*
;
Acetyl Coenzyme A/metabolism*
;
Streptomyces/genetics*
;
Polyketide Synthases/metabolism*
3.Cloning and bioinformatics analysis of β-amyrin synthase in Dipsacus asper.
Wei-Lin YAO ; Jie PAN ; Teng-Fei NIU ; Xiao-Lin YANG ; Shu-Juan ZHAO ; Zheng-Tao WANG ; Ru-Feng WANG
China Journal of Chinese Materia Medica 2022;47(17):4593-4599
Dipsaci Radix is one of the commonly used Chinese medicinal materials in China, with a long history. It has the medicinal activities of nourishing liver and kidney, recovering from broken sinews, and treating bone fracture. Triterpenoid saponins are the main functional ingredients of Dipsacus asper. β-Amyrin synthases(β-AS) as a superfamily of oxidosqualene cyclases(OSCs) can catalyze the construction of the skeleton structure of oleanane-type triterpenoid saponins. There are only a few studies about the β-AS in D. asper, and the catalytic mechanism of this enzyme remains to be explored. To enrich the information of β-AS, according to the transcriptome sequencing results, we cloned DaWβ-AS gene from D. asper into a specific vector for heterologous expression in Escherichia coli. In the meantime, real-time PCR was performed to analyze the relative expression of DaWβ-AS in four different tissues of D. asper. The results of RT-qPCR showed DaWβ-AS had the highest expression level in leaves. Bioinformatics results indicated that DaWβ-AS had a conserved domain of PLN03012 superfamily, belonging to the cl31551 superfamily. There was no transmembrane domain or signal peptide in DaWβ-AS. This study provides a scientific basis for revealing the biological pathways of triterpenoid saponins in D. asper, which will facilitate the biosynthesis of the associated saponins and afford reference for the cultivation and development of high-quality resources of D. asper.
Cloning, Molecular
;
Computational Biology
;
Dipsacaceae/chemistry*
;
Intramolecular Transferases
;
Protein Sorting Signals
;
Saponins/chemistry*
;
Triterpenes/chemistry*
4.Synergistic effect on biosynthesis of Panax notoginseng saponins by overexpressing a transcription factor PnbHLH and RNA interference of cycloartenol synthase gene.
Li JIANG ; Yi-Lin YU ; Min JIANG ; Xiu-Ming CUI ; Di-Qiu LIU ; Feng GE
China Journal of Chinese Materia Medica 2021;46(1):94-102
This study cloned the transcription factor gene PnbHLH which held an open reading frame of 966 bp encoding 321 amino acids. This study constructed the overexpression vector of transcription factor PnbHLH of Panax notoginseng. The combination of PnbHLH overexpression and RNAi of the key enzyme gene PnCAS involved in the phytosterol biosynthesis was achieved in P. notoginseng cells, thus exploring the biosynthetic regulation of P. notoginseng saponins(PNS) by the synergistic effect of PnbHLH overexpression and PnCAS RNAi. The results showed that the PnbHLH transcription factor interacted with the promoters of key enzyme genes PnDS, PnSS and PnSE in the biosynthetic pathway of PNS, and then regulated the expression levels of key enzyme genes and affected the biosynthesis of saponins indirectly. Further study indicated that the synergistic effect of PnbHLH overexpression and PnCAS RNAi was a more effective approach to regulate the biosynthesis of saponins. Compared with the wild type and PnCAS RNAi cells of P. notoginseng, the contents of total saponins and monomeric saponins(Rd, Rb_1, Re, Rg_1 and R_1) were increased to some extent in the cell lines of PnbHLH overexpression and PnCAS RNAi. This indicated that the two ways of forward regulation and reverse regulation of saponin biosynthesis showed superposition effect. This study explored a more rational and efficient regulation strategy of PNS biosynthesis based on the advantages of multi-point regulation of transcription factors as well as the down-regulation of by-product synthesis of saponins.
Intramolecular Transferases
;
Panax notoginseng
;
RNA Interference
;
Saponins
;
Transcription Factors/genetics*
5.Dynamic changes of the PGAM1 expression in the mouse testis exposed to single heat stress.
Yuan-Shu ZHAO ; Wen-Bin CHEN ; Li-Bin ZOU ; Dao-Jun L ; Shou-Bo ZHANG
National Journal of Andrology 2021;27(9):780-786
Objective:
To investigate the expression of phosphoglycerate mutase 1 (PGAM1) in the mouse testis after exposure to single heat stress (SHS).
METHODS:
We randomly assigned 32 C57 male mice to an SHS (n = 16) and a control group (n = 16), the former bathed in water at 43 ℃ and the latter at 25 ℃ for 15 minutes. At 1 and 7 days after exposure, we harvested the testicular tissue for observation of the morphological changes of testicular cells by HE staining and determination of the location and expression of the PGAM1 protein by immunohistochemistry and Western blot.
RESULTS:
The testis volume of the mice were reduced significantly, the spermatogenic tubules were disorganized, and the cells were reduced in number after heat stress and basically disappeared after 7 days. Immunohistochemistry showed extensive expression of the PGAM1 protein in the testicular spermatogenic tubules of the SHS-exposed mice, significantly higher than in the control group at 1 day after exposure, which was down-regulated in the testis tissue at 7 days, but still markedly higher than that in the control. Western blot exhibited significantly up-regulated expression of the PGAM1 protein after heat stress compared with that in the control group.
CONCLUSIONS
The expression of the PGAM1 protein undergoes dynamic changes in the mouse testis after exposed to single heat stress, which is related to heat stress-induced proliferation and division of testicular spermatogenic cells.
Animals
;
Heat-Shock Response
;
Male
;
Mice
;
Phosphoglycerate Mutase
;
Testis
6.Analysis of PMM2 gene variant in an infant with congenital disorders of glycosylation type 1a.
Ruohao WU ; Kunyin QIU ; Dongfang LI ; Yu LI ; Bingqing DENG ; Xiangyang LUO
Chinese Journal of Medical Genetics 2019;36(4):314-317
OBJECTIVE:
To identify potential mutation of PMM2 gene in an infant with congenital disorders of glycosylation type 1a (CDG-1a).
METHODS:
Genomic DNA was extracted from peripheral blood sample of the patient. All coding exons (exons 1-8) and splicing sites of the PMM2 gene were amplified with PCR. Potential variants were detected by direct sequencing of the PCR products and comparing the results against the ESP and SNP human gene databases. A protein BLAST system was employed to analyze cross-species conservation of the variants amino acid. A PubMed BLAST CD-search system was employed to identify functional domains damaged by variants of the PMM2 gene. Impact of potential variants was analyzed using software including PolyPhen-2 SIFT and Mutation Taster. Whole exome sequencing was used to identify additional variants of the PMM2 gene which may explain the condition of the patient.
RESULTS:
The child was found to carry compound heterozygous variants (c.458_462delTAAGA and c.395T>C) of the PMM2 gene, which were inherited respectively from his father and mother. The c.458_462delTAAGA has not been reported previously and may result in disruption of 10 functional domains within the PMM2 protein. The c.395T>C mutation has been recorded by a SNP database with frequency unknown. Both mutations were predicted as "probably damaging". Whole exome sequencing has identified no additional disease-causing variant which can explain the patient's condition.
CONCLUSION
The patient's condition may be attributed to the compound heterozygous variants c.458_462delTAAGA and c.395T>C of the PMM2 gene. Above results has facilitated molecular diagnosis for the patient.
Congenital Disorders of Glycosylation
;
genetics
;
Exons
;
Humans
;
Infant
;
Mutation
;
Phosphotransferases (Phosphomutases)
;
genetics
7.Study of heterologous efficient synthesis of β-amyrin and high-density fermentation.
Meng-Chu SUN ; Er-Kun CHAO ; Xin-Yao SU ; Min ZHU ; Yong SU ; Guang-Tao QIAN ; Shi-Lin CHEN ; Cai-Xia WANG ; Jian-Ping XUE
China Journal of Chinese Materia Medica 2019;44(7):1341-1349
In this study, the synthetic pathway of β-amyrin was constructed in the pre-constructed Saccharomyces cerevisiae chassis strain Y0 by introducing β-amyrin synthase from Glycyrrhiza uralensis, resulting strain Y1-C20-6, which successfully produced β-amyrin up to 5.97 mg·L~(-1). Then, the mevalonate pyrophosphate decarboxylase gene(ERG19), mevalonate kinase gene(ERG12), 3-hydroxy-3-methylglutaryl-CoA synthase gene(ERG13), phosphomevalonate kinase gene(ERG8) and IPP isomerase gene(IDI1)were overexpressed to promoted the metabolic fluxto the direction of β-amyrin synthesis for further improving β-amyrin production, resulting the strain Y2-C2-4 which produced β-amyrin of 10.3 mg·L~(-1)under the shake flask fermentation condition. This is 100% higher than that of strain Y1-C20-6, illustrating the positive effect of the metabolic engineering strategy applied in this study. The titer of β-amyrin was further improved up to 157.4 mg·L~(-1) in the fed-batch fermentation, which was almost 26 fold of that produced by strain Y1-C20-6. This study not only laid the foundation for the biosynthesis of β-amyrin but also provided a favorable chassis strain for elucidation of cytochrome oxidases and glycosyltransferases of β-amyrin-based triterpenoids.
Fermentation
;
Glycyrrhiza uralensis
;
enzymology
;
genetics
;
Industrial Microbiology
;
Intramolecular Transferases
;
genetics
;
Metabolic Engineering
;
Oleanolic Acid
;
analogs & derivatives
;
biosynthesis
;
Saccharomyces cerevisiae
;
metabolism
8.Construction of yeast one-hybrid library and screening of transcription factors regulating LS expression in Ganoderma lucidum.
Xiao-Lan XU ; Feng-Li ZHU ; Rong-Cai LAI ; Lin-Chun SHI ; Shi-Lin CHEN
China Journal of Chinese Materia Medica 2019;44(18):3967-3973
Lanosterol synthase( LS) is a key enzyme involving in the mevalonate pathway( MVA pathway) to produce lanosterol,which is a precursor of ganoderma triterpenoid. And the transcriptional regulation of LS gene directly affects the content of triterpenes in Ganoderma lucidum. In order to study the transcriptional regulation mechanism of LS gene,yeast one-hybrid technique was used to screen the transcription regulators which interact withthe promoter of LS. The bait vector was constructed by LS promoter,then the vector was transformed yeast cells to construct bait yeast strain. One-hybrid c DNA library was constructed via SMART technology. Then the c DNA and p GADT7-Rec vector were co-transformed into the bait yeast strain to screen the upstream regulatory factors of the promoter region of LS by homologous recombination. Total of 23 positive clones were screened. After sequencing,blast was performed against the whole-genome sequence of G. lucidum. As a result,8 regulatory factors were screened out including the transcription initiation TFIIB,the alpha/beta hydrolase super family,ALDH-SF superfamily,60 S ribosomal protein L21,ATP synthase β-subunit,microtubule associated protein Cript,prote asome subunit β-1,and transaldolase. Until now,the regulation effect of these 8 regulatory factors in G.lucidum has not been reported. This study provides candidate proteins for in-depth study on the expression regulation of LS.
Gene Library
;
Intramolecular Transferases/metabolism*
;
Reishi/genetics*
;
Saccharomyces cerevisiae
;
Transcription Factors/metabolism*
9.Phosphoglycerate mutase 1 knockdown inhibits prostate cancer cell growth, migration, and invasion.
Yao-An WEN ; Bo-Wei ZHOU ; Dao-Jun LV ; Fang-Peng SHU ; Xian-Lu SONG ; Bin HUANG ; Chong WANG ; Shan-Chao ZHAO
Asian Journal of Andrology 2018;20(2):178-183
Phosphoglycerate mutase 1 (PGAM1) is upregulated in many cancer types and involved in cell proliferation, migration, invasion, and apoptosis. However, the relationship between PGAM1 and prostate cancer is poorly understood. The present study investigated the changes in PGAM1 expression in prostate cancer tissues compared with normal prostate tissues and examined the cellular function of PGAM1 and its relationship with clinicopathological variables. Immunohistochemistry and Western blotting revealed that PGAM1 expression was upregulated in prostate cancer tissues and cell lines. PGAM1 expression was associated with Gleason score (P = 0.01) and T-stage (P = 0.009). Knockdown of PGAM1 by siRNA in PC-3 and 22Rv1 prostate cancer cell lines inhibited cell proliferation, migration, and invasion and enhanced cancer cell apoptosis. In a nude mouse xenograft model, PGAM1 knockdown markedly suppressed tumor growth. Deletion of PGAM1 resulted in decreased expression of Bcl-2, enhanced expression of Bax, caspases-3 and inhibition of MMP-2 and MMP-9 expression. Our results indicate that PGAM1 may play an important role in prostate cancer progression and aggressiveness, and that it might be a valuable marker of poor prognosis and a potential therapeutic target for prostate cancer.
Animals
;
Apoptosis/genetics*
;
Caspase 3/metabolism*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Gene Deletion
;
Gene Knockdown Techniques
;
Humans
;
Male
;
Matrix Metalloproteinase 2/metabolism*
;
Matrix Metalloproteinase 9/metabolism*
;
Mice
;
Mice, Nude
;
Neoplasm Invasiveness/genetics*
;
Neoplasm Transplantation
;
PC-3 Cells
;
Phosphoglycerate Mutase/genetics*
;
Prostatic Neoplasms/pathology*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Small Interfering
;
Transplantation, Heterologous
;
bcl-2-Associated X Protein/metabolism*
10.Identification of a novel frameshift mutation (L345Sfs*15) in a Korean neonate with methylmalonic acidemia.
Young A KIM ; Ji Yong KIM ; Yoo Mi KIM ; Chong Kun CHEON
Journal of Genetic Medicine 2017;14(2):80-85
Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder characterized by an abnormal accumulation of methylmalonyl-CoA and methylmalonate in body fluids without hyperhomocysteinemia. Cardiac disease is a rarely known lethal complication of MMA, herein, we report a Korean neonate diagnosed with MMA on the basis of biochemical and genetic findings, who developed cardiomyopathy, resulting in sudden death. The patient presented vomiting and lethargy at 3 days of age. Initially, the patient had an increased plasma propionylcarnitine/acetylcarnitine concentration ratio of 0.49 in a tandem mass spectrometry analysis and an elevated ammonia level of 537 µmol/L. Urine organic acid analysis showed increased excretion of methylmalonate. Subsequent sequence analysis of the methylmalonyl-CoA mutase (MUT) gene revealed compound heterozygous mutations c.323G>A (p.Arg108His) in exon 1 and c.1033_1034del (p. Leu345Serfs*15) in exon 4, the latter being a novel mutation. In summary, this is the first case of MMA and cardiomyopathy in Korea that was confirmed by genetic analysis to involve a novel MUT mutation.
Ammonia
;
Body Fluids
;
Cardiomyopathies
;
Death, Sudden
;
Exons
;
Frameshift Mutation*
;
Heart Diseases
;
Humans
;
Hyperhomocysteinemia
;
Infant, Newborn*
;
Korea
;
Lethargy
;
Methylmalonyl-CoA Mutase
;
Plasma
;
Sequence Analysis
;
Tandem Mass Spectrometry
;
Vomiting

Result Analysis
Print
Save
E-mail