1.Advances in macrophage-targeting nanoparticles for the diagnosis and treatment of inflammatory bowel disease.
Journal of Zhejiang University. Medical sciences 2023;52(6):785-794
The pathogenesis of inflammatory bowel disease (IBD) is not fully elucidated. However, it has been considered that inflammatory macrophages may be involved in the imbalance of the intestinal mucosal immunity to regulate several signaling pathways, leading to IBD progression. The ratio of M1 to M2 subtypes of activated macrophages tends to increase in the inflamed intestinal section. There are challenges in the diagnosis and treatment of IBD, such as unsatisfactory specificity of imaging findings, low drug accumulation in the intestinal lesions, unstable therapeutic efficacy, and drug-related systemic toxicity. Recently developed nanoparticles may provide a new approach for the diagnosis and treatment of IBD. Nanoparticles targeted to macrophages can be used as contrast agents to improve the imaging quality or used as a drug delivery vector to increase the therapeutic efficiency of IBD. This article reviews the research progress on macrophage-targeting nanoparticles for the diagnosis and treatment of IBD to provide a reference for further research and clinical application.
Humans
;
Inflammatory Bowel Diseases/therapy*
;
Intestines
;
Macrophages/metabolism*
;
Intestinal Mucosa/pathology*
;
Nanoparticles
2.Microbial sensing in the intestine.
Tingting WAN ; Yalong WANG ; Kaixin HE ; Shu ZHU
Protein & Cell 2023;14(11):824-860
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Humans
;
Inflammatory Bowel Diseases
;
Gastrointestinal Microbiome
;
Microbiota
;
Immune System
;
Intestines
3.Advances in organoids of the digestive system.
Hongyuan LIU ; Ruofan WANG ; Xulong LI ; Zhengyang WU ; Jinli SUN ; Weiyi LU ; Xianli WANG
Chinese Journal of Biotechnology 2023;39(4):1332-1350
Organoid is a newly developed cellular there-dimensional culture system in recent years. Organoids have a three-dimensional structure, which is similar to that of the real organs. Together with the characteristics of self-renewal and reproduction of tissue origin, organoids can better simulate the function of real organs. Organoids provide a new platform for the study of organogenesis, regeneration, disease pathogenesis, and drug screening. The digestive system is an essential part of the human body and performs important functions. To date, organoid models of various digestive organs have been successfully established. This review summarizes the latest research progress of organoids of taste buds, esophagi, stomachs, livers and intestines, and prospects future application of organoids.
Humans
;
Organoids
;
Intestines
;
Liver
4.Research progress in prevention and treatment of radiation-induced intestinal injury by traditional Chinese medicine active components.
Chuang-Chuang WANG ; Hong-Xin NING ; Hang LI ; Mei-Jing LIANG ; Meng-Yi LI ; Shuai WANG ; Jiang-Hong GUO ; Yi-Liang LI ; Wen-Bin HOU
China Journal of Chinese Materia Medica 2023;48(14):3743-3752
Radiation-induced intestinal injury(RIII), a common complication of radiotherapy for pelvic malignancies, affects the quality of life and the radiotherapy efficacy for cancer. Currently, the main clinical approaches for the prevention and treatment of RIII include drug therapy, hyperbaric oxygen therapy, and surgical treatment. Among these methods, drug therapy is cost-effective. Traditional Chinese medicine(TCM) containing a variety of active components demonstrates mild side effects and good efficacy in preventing and treating RIII. Studies have proven that TCM active components, such as flavonoids, terpenoids, phenylpropanoids, and alkaloids, can protect the intestine against RIII by inhibiting oxidative stress, regulating the expression of inflammatory cytokines, modulating the mitochondrial apoptosis pathway, adjusting intestinal flora, and suppressing cell apoptosis. These mechanisms can help alleviate the symptoms of RIII. The paper aims to provide a theoretical reference for the discovery of new drugs for the prevention and treatment of RIII by reviewing the literature on TCM active components in the last 10 years.
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal/pharmacology*
;
Quality of Life
;
Intestines
;
Alkaloids
5.Intestinal and lung inflammatory group 2 innate lymphoid cells (iILC2s) and their related cytokines in chronic obstructive pulmonary disease.
Qian XU ; Xi TAN ; Tingting HU ; Min JIANG
Chinese Journal of Cellular and Molecular Immunology 2023;39(7):599-603
Objective To investigate the relationship between intestinal inflammatory group 2 innate lymphoid cells (iILC2s) and lung ILC2s and its inflammatory response in chronic obstructive pulmonary disease (COPD). Methods Mouse COPD model was established by smoking method. The mice were randomly divided into normal group and COPD group. HE staining was used to detect the pathological changes in lung and intestine tissues of mice in normal group and COPD group, and the contents of natural ILC2s(nILC2s) and iILC2s cells were measured by flow cytometry. Wright-Giemsa staining was used to measure the number of immune cells in the bronchoalveolar lavage fluid (BALF) of mice in normal group and COPD group, and the concentration of IL-13 and IL-4 was detected by ELISA. Results In COPD mice, epithelial cells of the lung and intestinal tissues exhibited pathological hyperplasia, partial atrophy or deletion, inflammatory cell infiltration, increased pathological score and significantly increased neutrophils, monocytes, and lymphocytes in BALF. Lung iILC2s, intestinal nILC2s and iILC2s were increased significantly in the COPD group. The contents of IL-13 and IL-4 in BALF were significantly increased. Conclusion The increase of iILC2s and their related cytokines in COPD lung may be related to intestinal inflammatory ILC2s.
Mice
;
Animals
;
Cytokines
;
Immunity, Innate
;
Interleukin-13
;
Interleukin-4
;
Lymphocytes
;
Lung/pathology*
;
Pulmonary Disease, Chronic Obstructive
;
Bronchoalveolar Lavage Fluid
;
Disease Models, Animal
;
Intestines
6.Multiple portions enteral nutrition and chyme reinfusion of a blunt bowel injury patient with hyperbilirubinemia undergoing open abdomen: A case report.
Kai WANG ; Yun-Xuan DENG ; Kai-Wei LI ; Xin-Yu WANG ; Chao YANG ; Wei-Wei DING
Chinese Journal of Traumatology 2023;26(4):236-243
Blunt bowel injury (BBI) is relatively rare but life-threatening when delayed in surgical repair or anastomosis. Providing enteral nutrition (EN) in BBI patients with open abdomen after damage control surgery is challenging, especially for those with discontinuity of the bowel. Here, we report a 47-year-old male driver who was involved in a motor vehicle collision and developed ascites on post-trauma day 3. Emergency exploratory laparotomy at a local hospital revealed a complete rupture of the jejunum and then primary anastomosis was performed. Postoperatively, the patient was transferred to our trauma center for septic shock and hyperbilirubinemia. Following salvage resuscitation, damage control laparotomy with open abdomen was performed for abdominal sepsis, and a temporary double enterostomy (TDE) was created where the anastomosis was ruptured. Given the TDE and high risk of malnutrition, multiple portions EN were performed, including a proximal portion EN support through a nasogastric tube and a distal portion EN via a jejunal feeding tube. Besides, chyme delivered from the proximal portion of TDE was injected into the distal portion of TDE via a jejunal feeding tube. Hyperbilirubinemia was alleviated with the increase in chyme reinfusion. After 6 months of home EN and chyme reinfusion, the patient finally underwent TDE reversal and abdominal wall reconstruction and was discharged with a regular diet. For BBI patients with postoperative hyperbilirubinemia who underwent open abdomen, the combination of multiple portions EN and chyme reinfusion may be a feasible and safe option.
Male
;
Humans
;
Middle Aged
;
Enteral Nutrition
;
Intestines/surgery*
;
Intestinal Diseases
;
Abdomen/surgery*
;
Anastomosis, Surgical
;
Abdominal Injuries/surgery*
7.Intestinal and pharyngeal microbiota in early neonates: an analysis based on high-throughput sequencing.
Xue-Juan WANG ; Zhi-Ying SHAO ; Min-Rong ZHU ; Ming-Yu YOU ; Yu-Han ZHANG ; Xiao-Qing CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(5):508-515
OBJECTIVES:
To investigate the distribution characteristics and correlation of intestinal and pharyngeal microbiota in early neonates.
METHODS:
Full-term healthy neonates who were born in Shanghai Pudong New Area Maternal and Child Health Hospital from September 2021 to January 2022 and were given mixed feeding were enrolled. The 16S rRNA sequencing technique was used to analyze the stool and pharyngeal swab samples collected on the day of birth and days 5-7 after birth, and the composition and function of intestinal and pharyngeal microbiota were analyzed and compared.
RESULTS:
The diversity analysis showed that the diversity of pharyngeal microbiota was higher than that of intestinal microbiota in early neonates, but the difference was not statistically significant (P>0.05). On the day of birth, the relative abundance of Proteobacteria in the intestine was significantly higher than that in the pharynx (P<0.05). On days 5-7 after birth, the relative abundance of Actinobacteria and Proteobacteria in the intestine was significantly higher than that in the pharynx (P<0.05), and the relative abundance of Firmicutes in the intestine was significantly lower than that in the pharynx (P<0.05). At the genus level, there was no significant difference in the composition of dominant bacteria between the intestine and the pharynx on the day of birth (P>0.05), while on days 5-7 after birth, there were significant differences in the symbiotic bacteria of Streptococcus, Staphylococcus, Rothia, Bifidobacterium, and Escherichia-Shigella between the intestine and the pharynx (P<0.05). The analysis based on the database of Clusters of Orthologous Groups of proteins showed that pharyngeal microbiota was more concentrated on chromatin structure and dynamics and cytoskeleton, while intestinal microbiota was more abundant in RNA processing and modification, energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, coenzyme transport and metabolism, and others (P<0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that compared with pharyngeal microbiota, intestinal microbiota was more predictive of cell motility, cellular processes and signal transduction, endocrine system, excretory system, immune system, metabolic diseases, nervous system, and transcription parameters (P<0.05).
CONCLUSIONS
The composition and diversity of intestinal and pharyngeal microbiota of neonates are not significantly different at birth. The microbiota of these two ecological niches begin to differentiate and gradually exhibit distinct functions over time.
Humans
;
Infant, Newborn
;
Bacteria
;
China
;
High-Throughput Nucleotide Sequencing
;
Intestines
;
Microbiota
;
Pharynx/microbiology*
;
RNA, Ribosomal, 16S/genetics*
8.Experimental study on the toxicokinetics and gastrointestinal damage in rats poisoned with acute diquat poisoning at different exposure doses.
Jianshuang ZHANG ; Yiqing SUN ; Hengbo GAO ; Lin YUAN ; Dongqi YAO ; Liang LIU ; Baopu LYU ; Yingping TIAN
Chinese Critical Care Medicine 2023;35(6):651-657
OBJECTIVE:
To observe the toxicokinetic parameters, absorption characteristics and pathomorphological damage in different parts of the gastrointestinal tract of rats poisoned with different doses of diquat (DQ).
METHODS:
Ninety-six healthy male Wistar rats were randomly divided into a control group (six rats) and low (115.5 mg/kg), medium (231.0 mg/kg) and high (346.5 mg/kg) dose DQ poisoning groups (thirty rats in each dose group), and then the poisoning groups were randomly divided into 5 subgroups according to the time after exposure (15 minutes and 1, 3, 12, 36 hours; six rats in each subgroup). All rats in the exposure groups were given a single dose of DQ by gavage. Rats in the control group was given the same amount of saline by gavage. The general condition of the rats was recorded. Blood was collected from the inner canthus of the eye at 3 time points in each subgroup, and rats were sacrificed after the third blood collection to obtain gastrointestinal specimens. DQ concentrations in plasma and tissues were determined by ultra-high performance liquid chromatography and mass spectrometry (UPHLC-MS), and the toxic concentration-time curves were plotted to calculate the toxicokinetic parameters; the morphological structure of the intestine was observed under light microscopy, and the villi height and crypt depth were determined and the ratio (V/C) was calculated.
RESULTS:
DQ was detected in the plasma of the rats in the low, medium and high dose groups 5 minutes after exposure. The time to maximum plasma concentration (Tmax) was (0.85±0.22), (0.75±0.25) and (0.25±0.00) hours, respectively. The trend of plasma DQ concentration over time was similar in the three dose groups, but the plasma DQ concentration increased again at 36 hours in the high dose group. In terms of DQ concentration in gastrointestinal tissues, the highest concentrations of DQ were found in the stomach and small intestine from 15 minutes to 1 hour and in the colon at 3 hours. By 36 hours after poisoning, the concentrations of DQ in all parts of the stomach and intestine in the low and medium dose groups had decreased to lower levels. Gastrointestinal tissue (except jejunum) DQ concentrations in the high dose group tended to increase from 12 hours. Higher doses of DQ were still detectable [gastric, duodenal, ileal and colonic DQ concentrations of 6 400.0 (1 232.5), 4 889.0 (6 070.5), 10 300.0 (3 565.0) and 1 835.0 (202.5) mg/kg respectively]. Light microscopic observation of morphological and histopathological changes in the intestine shows that acute damage to the stomach, duodenum and jejunum of rats was observed 15 minutes after each dose of DQ, pathological lesions were observed in the ileum and colon 1 hour after exposure, the most severe gastrointestinal injury occurred at 12 hours, significant reduction in villi height, significant increase in crypt depth and lowest V/C ratio in all segments of the small intestine, damage begins to diminish by 36-hour post-intoxication. At the same time, morphological and histopathological damage to the intestine of rats at all time points increased significantly with increasing doses of the toxin.
CONCLUSIONS
The absorption of DQ in the digestive tract is rapid, and all segments of the gastrointestinal tract may absorb DQ. The toxicokinetics of DQ-tainted rats at different times and doses have different characteristics. In terms of timing, gastrointestinal damage was seen at 15 minutes after DQ, and began to diminish at 36 hours. In terms of dose, Tmax was advanced with the increase of dose and the peak time was shorter. The damage to the digestive system of DQ is closely related to the dose and retention time of the poison exposure.
Animals
;
Male
;
Rats
;
Diquat/toxicity*
;
Gastrointestinal Diseases
;
Intestines
;
Poisons
;
Rats, Wistar
;
Toxicokinetics
9.Differences in clinicopathological features, gene mutations, and prognosis between primary gastric and intestinal gastrointestinal stromal tumors in 1061 patients.
Jia Xin LI ; Lin SUN ; Shuai ZHAO ; Bing SHAO ; Yu Hong GUO ; Shuai CHEN ; Han LIANG ; Y SUN
Chinese Journal of Gastrointestinal Surgery 2023;26(4):346-356
Objective: To analyze the clinicopathological features and gene mutations of primary gastrointestinal stromal tumors (GISTs) of the stomach and intestine and the prognosis of intermediate- and high-risk GISTs. Methods: This was a retrospective cohort study. Data of patients with GISTs admitted to Tianjin Medical University Cancer Institute and Hospital from January 2011 to December 2019 were collected retrospectively. Patients with primary gastric or intestinal disease who had undergone endoscopic or surgical resection of the primary lesion and were confirmed pathologically as GIST were included. Patients treated with targeted therapy preoperatively were excluded. The above criteria were met by 1061 patients with primary GISTs, 794 of whom had gastric GISTs and 267 intestinal GISTs. Genetic testing had been performed in 360 of these patients since implementation of Sanger sequencing in our hospital in October 2014. Gene mutations in KIT exons 9, 11, 13, and 17 and PDGFRA exons 12 and 18 were detected by Sanger sequencing. The factors investigated in this study included: (1) clinicopathological data, such as sex, age, primary tumor location, maximum tumor diameter, histological type, mitotic index (/5 mm2), and risk classification; (2) gene mutation; (3) follow-up, survival, and postoperative treatment; and (4) prognostic factors of progression-free survival (PFS) and overall survival (OS) for intermediate- and high-risk GIST. Results: (1) Clinicopathological features: The median ages of patients with primary gastric and intestinal GIST were 61 (8-85) years and 60 (26-80) years, respectively; The median maximum tumor diameters were 4.0 (0.3-32.0) cm and 6.0 (0.3-35.0) cm, respectively; The median mitotic indexes were 3 (0-113)/5 mm² and 3 (0-50)/5 mm², respectively; The median Ki-67 proliferation indexes were 5% (1%-80%) and 5% (1%-50%), respectively. The rates of positivity for CD117, DOG-1, and CD34 were 99.7% (792/794), 99.9% (731/732), 95.6% (753/788), and 100.0% (267/267), 100.0% (238/238), 61.5% (163/265), respectively. There were higher proportions of male patients (χ²=6.390, P=0.011), tumors of maximum diameter > 5.0 cm (χ²=33.593, P<0.001), high-risk (χ²=94.957, P<0.001), and CD34-negativity (χ²=203.138, P<0.001) among patients with intestinal GISTs than among those with gastric GISTs. (2) Gene mutations: Gene mutations were investigated in 286/360 patients (79.4%) with primary gastric GISTs and 74/360 (20.6%) with primary intestinal GISTs. Among the 286 patients with gastric primary GISTs, 79.4% (227/286), 8.4% (24/286), and 12.2% (35/286), had KIT mutations, PDGFRA mutations, and wild-type, respectively. Among the 74 patients with primary intestinal GISTs, 85.1% (63/74) had KIT mutations and 14.9% (11/74) were wild-type. The PDGFRA mutation rate was lower in patients with intestinal GISTs than in those with gastric GISTs[ 0% vs. 8.4%(24/286), χ²=6.770, P=0.034], whereas KIT exon 9 mutations occurred more often in those with intestinal GISTs [22.2% (14/63) vs. 1.8% (4/227), P<0.001]. There were no significant differences between gastric and intestinal GISTs in the rates of KIT exon 11 mutation type and KIT exon 11 deletion mutation type (both P>0.05). (3) Follow-up, survival, and postoperative treatment: After excluding 228 patients with synchronous and metachronous other malignant tumors, the remaining 833 patients were followed up for 6-124 (median 53) months with a follow-up rate of 88.6% (738/833). None of the patients with very low or low-risk gastric (n=239) or intestinal GISTs (n=56) had received targeted therapy postoperatively. Among 179 patients with moderate-risk GISTs, postoperative targeted therapy had been administered to 88/155 with gastric and 11/24 with intestinal GISTs. Among 264 patients with high-risk GISTs, postoperative targeted therapy had been administered to 106/153 with gastric and 62/111 with intestinal GISTs. The 3-, 5-, and 10-year PFS of patients with gastric or intestinal GISTs were 96.5%, 93.8%, and 87.6% and 85.7%, 80.1% and 63.3%, respectively (P<0.001). The 3-, 5-, and 10-year OS were 99.2%, 98.8%, 97.5% and 94.8%, 92.1%, 85.0%, respectively (P<0.001). (4) Analysis of predictors of intermediate- and high-risk GISTs: The 5-year PFS of patients with gastric and intestinal GISTs were 89.5% and 73.2%, respectively (P<0.001); The 5-year OS were 97.9% and 89.3%, respectively (P<0.001). Multivariate analysis showed that high risk (HR=2.918, 95%CI: 1.076-7.911, P=0.035) and Ki-67 proliferation index > 5% (HR=2.778, 95%CI: 1.389-5.558, P=0.004) were independent risk factors for PFS in patients with intermediate- and high-risk GISTs (both P<0.05). Intestinal GISTs (HR=3.485, 95%CI: 1.407-8.634, P=0.007) and high risk (HR=3.753,95%CI:1.079-13.056, P=0.038) were independent risk factors for OS in patients with intermediate- and high-risk GISTs (both P<0.05). Postoperative targeted therapy was independent protective factor for PFS and OS (HR=0.103, 95%CI: 0.049-0.213, P<0.001; HR=0.210, 95%CI:0.078-0.564,P=0.002). Conclusions: Primary intestinal GIST behaves more aggressively than gastric GISTs and more frequently progress after surgery. Moreover, CD34 negativity and KIT exon 9 mutations occur more frequently in patients with intestinal GISTs than in those with gastric GISTs.
Male
;
Humans
;
Gastrointestinal Stromal Tumors/surgery*
;
Retrospective Studies
;
Ki-67 Antigen
;
Stomach Neoplasms/pathology*
;
Prognosis
;
Mutation
;
Intestines/pathology*
;
Proto-Oncogene Proteins c-kit/genetics*
;
Receptor, Platelet-Derived Growth Factor alpha/genetics*

Result Analysis
Print
Save
E-mail