1.Activation of intestinal mucosal TLR4/NF-κB pathway is associated with renal damage in mice with pseudo-sterile IgA nephropathy.
Yuyan TANG ; Weiqian SUN ; Haidong HE ; Ping HU ; Meiping JIN ; Ping LIU ; Lusheng HUANG ; Xudong XU
Chinese Journal of Cellular and Molecular Immunology 2023;39(10):865-871
Objective To investigate the effect of intestinal mucosal Toll-like receptor 4/nuclear factor κB (TLR4/NF-κB) signaling pathway on renal damage in pseudo-sterile IgA nephropathy (IgAN) mice. Methods C57BL/6 mice were randomly divided into experimental group (pseudosterile mouse model group), control group (IgAN mouse model group), pseudosterile mouse blank group, and normal mouse blank group. Pseudosterile mice were established by intragastric administration of quadruple antibiotics once a day for 14 days. The pseudosterile IgAN mouse model was set up by combination of oral bovine serum albumin (BSA) administration and staphylococcal enterotoxin B (SEB) injection. The pathological changes of renal tissue were observed by immunofluorescence staining and PAS staining, and the intestinal mucosa barrier damage indicators lipopolysaccharide(LPS), soluble intercellular adhesion molecule 1(sICAM-1) and D-lactate(D-LAC) were analyzed by ELISA. Biochemical analysis was used to test 24 hour urine protein, serum creatinine and blood urea nitrogen. The mRNA and protein levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear factor κB (NF-κB) were detected by reverse transcription PCR and Western blot analysis. Results The kidney damage of pseudosterile IgAN mice was more severe than that of IgAN mice, and the expressions of intestinal mucosal barrier damage markers (LPS, sICAM-1 and D-LAC) were significantly increased in pseudosterile IgAN mice. In addition, the expressions of TLR4, MyD88, and NF-κB level were all up-regulated in the intestinal tissues of IgAN pseudosterile mice. Conclusion Intestinal flora disturbance leads to intestinal mucosal barrier damage and induces activation of TLR4 signaling pathway to mediate renal injury in IgAN.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Glomerulonephritis, IGA
;
NF-kappa B
;
Toll-Like Receptor 4/genetics*
;
Lipopolysaccharides
;
Myeloid Differentiation Factor 88/genetics*
;
Kidney
;
Intestinal Mucosa
;
Infertility
;
Disease Models, Animal
2.Advances in macrophage-targeting nanoparticles for the diagnosis and treatment of inflammatory bowel disease.
Journal of Zhejiang University. Medical sciences 2023;52(6):785-794
The pathogenesis of inflammatory bowel disease (IBD) is not fully elucidated. However, it has been considered that inflammatory macrophages may be involved in the imbalance of the intestinal mucosal immunity to regulate several signaling pathways, leading to IBD progression. The ratio of M1 to M2 subtypes of activated macrophages tends to increase in the inflamed intestinal section. There are challenges in the diagnosis and treatment of IBD, such as unsatisfactory specificity of imaging findings, low drug accumulation in the intestinal lesions, unstable therapeutic efficacy, and drug-related systemic toxicity. Recently developed nanoparticles may provide a new approach for the diagnosis and treatment of IBD. Nanoparticles targeted to macrophages can be used as contrast agents to improve the imaging quality or used as a drug delivery vector to increase the therapeutic efficiency of IBD. This article reviews the research progress on macrophage-targeting nanoparticles for the diagnosis and treatment of IBD to provide a reference for further research and clinical application.
Humans
;
Inflammatory Bowel Diseases/therapy*
;
Intestines
;
Macrophages/metabolism*
;
Intestinal Mucosa/pathology*
;
Nanoparticles
3.Immunogenic molecules associated with gut bacterial cell walls: chemical structures, immune-modulating functions, and mechanisms.
Ruopeng YIN ; Tao WANG ; Huanqin DAI ; Junjie HAN ; Jingzu SUN ; Ningning LIU ; Wang DONG ; Jin ZHONG ; Hongwei LIU
Protein & Cell 2023;14(10):776-785
Interactions between gut microbiome and host immune system are fundamental to maintaining the intestinal mucosal barrier and homeostasis. At the host-gut microbiome interface, cell wall-derived molecules from gut commensal bacteria have been reported to play a pivotal role in training and remodeling host immune responses. In this article, we review gut bacterial cell wall-derived molecules with characterized chemical structures, including peptidoglycan and lipid-related molecules that impact host health and disease processes via regulating innate and adaptive immunity. Also, we aim to discuss the structures, immune responses, and underlying mechanisms of these immunogenic molecules. Based on current advances, we propose cell wall-derived components as important sources of medicinal agents for the treatment of infection and immune diseases.
Gastrointestinal Microbiome
;
Intestinal Mucosa
;
Bacteria
;
Immune System
;
Symbiosis
;
Immunity, Mucosal
;
Immunity, Innate
4.Zuogui Jiangtang Qinggan Prescription promotes recovery of intestinal mucosal barrier in mice with type 2 diabetes mellitus and nonalcoholic fatty liver disease by improving intestinal flora homeostasis.
Jun-Ju ZOU ; Hong LI ; Min ZHOU ; Qiu-Qing HUANG ; Yong-Jun WU ; Rong YU
China Journal of Chinese Materia Medica 2023;48(2):525-533
This study aimed to investigate the recovery effect of Zuogui Jiangtang Qinggan Prescription on intestinal flora homeostasis control and intestinal mucosal barrier in type 2 diabetes mellitus(T2DM) with nonalcoholic fatty liver disease(NAFLD) induced by a high-fat diet. NAFLD was established in MKR transgenic mice(T2DM mice) by a high-fat diet(HFD), and subsequently treated for 8 weeks with Zuogui Jiangtang Qinggan Prescription(7.5, 15 g·kg~(-1)) and metformin(0.067 g·kg~(-1)). Triglyceride and liver function were assessed using serum. The hematoxylin-eosin(HE) staining and Masson staining were used to stain the liver tissue, while HE staining and AB-PAS staining were used to stain the intestine tissue. 16S rRNA sequencing was utilized to track the changes in the intestinal flora of the mice in each group. Polymerase chain reaction(PCR) and immunofluorescence were used to determine the protein and mRNA expression levels of ZO-1, Occludin, and Claudin-1. The results demonstrated that Zuogui Jiangtang Qinggan Prescription increased the body mass of T2DM mice with NAFLD and decreased the hepatic index. It down-regulated the serum biomarkers of liver function and dyslipidemia such as alanine aminotransferase(ALT), aspartate transaminase(AST), and triglycerides(TG), increased insulin sensitivity, and improved glucose tolerance. According to the results of 16S rRNA sequencing, the Zuogui Jiangtang Qinggan Prescription altered the composition and abundance of the intestinal flora, increasing the relative abundances of Muribaculaceae, Lactobacillaceae, Lactobacillus, Akkermansia, and Bacteroidota and decreasing the relative abundances of Lachnospiraceae, Firmicutes, Deslfobacteria, Proteobacteria, and Desulfovibrionaceae. According to the pathological examination of the intestinal mucosa, Zuogui Jiangtang Qinggan Prescritpion increased the expression levels of the tight junction proteins ZO-1, Occludin, and Claudin-1, promoted intestinal mucosa repair, protected intestinal villi, and increased the height of intestinal mucosa villi and the number of goblet cells. By enhancing intestinal mucosal barrier repair and controlling intestinal microbiota homeostasis, Zuogui Jiangtang Qinggan Prescription reduces intestinal mucosal damage induced by T2DM and NAFLD.
Mice
;
Animals
;
Non-alcoholic Fatty Liver Disease/metabolism*
;
Gastrointestinal Microbiome
;
RNA, Ribosomal, 16S
;
Diabetes Mellitus, Type 2/metabolism*
;
Occludin/pharmacology*
;
Claudin-1/metabolism*
;
Intestinal Mucosa
;
Liver
;
Triglycerides/metabolism*
;
Diet, High-Fat
;
Homeostasis
;
Mice, Inbred C57BL
5.Fibroblasts overpressing WNT2b cause impairment of intestinal mucosal barrier.
Shu Zhe XIAO ; Yan Ling CHENG ; Yun ZHU ; Rui TANG ; Jian Biao GU ; Lin LAN ; Zhi Hua HE ; Dan Qiong LIU ; Lan Lan GENG ; Yang CHENG ; Si Tang GONG
Journal of Southern Medical University 2023;43(2):206-212
OBJECTIVE:
To investigate the mechanism by which fibroblasts with high WNT2b expression causes intestinal mucosa barrier disruption and promote the progression of inflammatory bowel disease (IBD).
METHODS:
Caco-2 cells were treated with 20% fibroblast conditioned medium or co-cultured with fibroblasts highly expressing WNT2b, with the cells without treatment with the conditioned medium and cells co-cultured with wild-type fibroblasts as the control groups. The changes in barrier permeability of Caco-2 cells were assessed by measuring transmembrane resistance and Lucifer Yellow permeability. In Caco-2 cells co-cultured with WNT2b-overexpressing or control intestinal fibroblasts, nuclear entry of β-catenin was detected with immunofluorescence assay, and the expressions of tight junction proteins ZO-1 and E-cadherin were detected with Western blotting. In a C57 mouse model of dextran sulfate sodium (DSS)-induced IBD-like enteritis, the therapeutic effect of intraperitoneal injection of salinomycin (5 mg/kg, an inhibitor of WNT/β-catenin signaling pathway) was evaluated by observing the changes in intestinal inflammation and detecting the expressions of tight junction proteins.
RESULTS:
In the coculture system, WNT2b overexpression in the fibroblasts significantly promoted nuclear entry of β-catenin (P < 0.01) and decreased the expressions of tight junction proteins in Caco-2 cells; knockdown of FZD4 expression in Caco-2 cells obviously reversed this effect. In DSS-treated mice, salinomycin treatment significantly reduced intestinal inflammation and increased the expressions of tight junction proteins in the intestinal mucosa.
CONCLUSION
Intestinal fibroblasts overexpressing WNT2b causes impairment of intestinal mucosal barrier function and can be a potential target for treatment of IBD.
Humans
;
Mice
;
Animals
;
Caco-2 Cells
;
beta Catenin/metabolism*
;
Culture Media, Conditioned/pharmacology*
;
Tight Junctions/metabolism*
;
Intestinal Mucosa
;
Inflammatory Bowel Diseases
;
Tight Junction Proteins/metabolism*
;
Inflammation/metabolism*
;
Fibroblasts/metabolism*
;
Mice, Inbred C57BL
;
Glycoproteins/metabolism*
;
Wnt Proteins/pharmacology*
;
Frizzled Receptors/metabolism*
6.Yinlai Decoction Protects Microstructure of Colon and Regulates Serum Level of D-Lactic Acid in Pneumonia Mice Fed with High-Calorie and High-Protein Diet.
Yun-Hui WANG ; He YU ; Tie-Gang LIU ; Teck Chuan KONG ; Zi-An ZHENG ; Yu-Xiang WAN ; Chen BAI ; Yu HAO ; Ying-Qiu MAO ; Jun WU ; Jing-Nan XU ; Li-Jun CUI ; Yu-Han WANG ; Yan-Ran SHAN ; Ying-Jun SHAO ; Xiao-Hong GU
Chinese journal of integrative medicine 2023;29(8):714-720
OBJECTIVE:
To investigate the effect of Yinlai Decoction (YD) on the microstructure of colon, and activity of D-lactic acid (DLA) and diamine oxidase (DAO) in serum of pneumonia mice model fed with high-calorie and high-protein diet (HCD).
METHODS:
Sixty male Kunming mice were randomly divided into 6 groups by the random number table method: normal control, pneumonia, HCD, HCD with pneumonia (HCD-P), YD (229.2 mg/mL), and dexamethasone (15.63 mg/mL) groups, with 10 in each group. HCD mice were fed with 52% milk solution by gavage. Pneumonia mice was modeled with lipopolysaccharide inhalation and was fed by gavage with either the corresponding therapeutic drugs or saline water, twice daily, for 3 days. After hematoxylin-eosin staining, the changes in the colon structure were observed under light microscopy and transmission electron microscope, respectively. Enzyme-linked immunosorbent assay was used to detect the protein levels of DLA and DAO in the serum of mice.
RESULTS:
The colonic mucosal structure and ultrastructure of mice in the normal control group were clear and intact. The colonic mucosal goblet cells in the pneumonia group tended to increase, and the size of the microvilli varied. In the HCD-P group, the mucosal goblet cells showed a marked increase in size with increased secretory activity. Loose mucosal epithelial connections were also observed, as shown by widened intercellular gaps with short sparse microvilli. These pathological changes of intestinal mucosa were significantly reduced in mouse models with YD treatment, while there was no significant improvement after dexamethasone treatment. The serum DLA level was significantly higher in the pneumonia, HCD, and HCD-P groups as compared with the normal control group (P<0.05). Serum DLA was significantly lower in the YD group than HCD-P group (P<0.05). Moreover, serum DLA level significantly increased in the dexamethasone group as compared with the YD group (P<0.01). There was no statistical significance in the serum level of DAO among groups (P>0.05).
CONCLUSIONS
YD can protect function of intestinal mucosa by improving the tissue morphology of intestinal mucosa and maintaining integrity of cell connections and microvilli structure, thereby reducing permeability of intestinal mucosa to regulate the serum levels of DLA in mice.
Mice
;
Male
;
Animals
;
Lactic Acid/pharmacology*
;
Intestinal Mucosa
;
Colon/pathology*
;
Dexamethasone/pharmacology*
;
Diet, High-Protein
;
Pneumonia/pathology*
8.Changes in the structure of intestinal mucosal flora in colorectal cancer patients.
Mei Mei HU ; Kai Yang CHEN ; Ning Yu WANG ; Yu Fan ZHAO ; Cheng Jin WEI ; Ling Xiang MENG ; Yong TANG ; Yu Ou TENG ; Hai Kuan WANG
Journal of Southern Medical University 2022;42(2):263-271
OBJECTIVE:
To investigate the changes in bacterial flora in fecal samples, at the tumor loci and in adjacent mucosa in patients with colorectal cancer (CRC).
METHODS:
We collected fecal samples from 13 patients with CRC and 20 healthy individuals and tumor and adjacent mucosa samples from 6 CRC patients. The differences in bacterial composition between the fecal and mucosa samples were analyzed with 16S rDNA sequencing and bioinformatics methods. We also detected the total number of bacteria in the feces using flow cytometry, isolated and identified the microorganisms in the fecal and mucosa samples using common bacterial culture media. We further tested the effects of 7 isolated bacterial strains on apoptosis of 3 CRC cell lines using lactate dehydrogenase detection kit.
RESULTS:
The bacterial α-diversity in the feces of healthy individuals and in adjacent mucosa of CRC patients was significantly higher than that in the feces and tumor mucosa in CRC patients (P < 0.05). Lactobacillaceae is a specific bacteria in the feces, while Escherichia, Enterococcus, and Fusobacterium are specific bacteria in tumor mucosa of CRC patients as compared with healthy individuals. Cell experiment with3 CRC cell lines showed that Bacteroides fragilis isolated from the tumor mucosa of CRC patients produced significant inhibitory effects on cell proliferation (P < 0.0001), while the isolated strain Fusobacterium nucleatum obviously promoted the proliferation of the cell lines (P < 0.001).
CONCLUSION
The bacterial flora in the feces, tumor mucosa and adjacent mucosa of CRC patients is significantly different from that in the feces of healthy individuals, and the fecal flora of CRC patients can not represent the specific flora of the tumor mucosa. Inhibition of F. nucleatum colonization in the tumor mucosa and promoting B. fragilis colonization may prove beneficial for CRC treatment.
Bacteria
;
Colorectal Neoplasms/pathology*
;
Feces/microbiology*
;
Gastrointestinal Microbiome
;
Humans
;
Intestinal Mucosa
9.YAP regulates intestinal epithelial cell proliferation through activation of STAT3 in DSS-induced colitis and associated cancer.
Journal of Central South University(Medical Sciences) 2022;47(12):1637-1645
OBJECTIVES:
Ulcerative colitis (UC) is a chronic, relapsing inflammation of the colon. Impaired epithelial repair is an important biological features of UC. Accelerating intestinal epithelial repair to achieve endoscopic mucosal healing has become a key goal in UC. Yes-associated protein (YAP) is a key transcriptional coactivator that regulates organ size, tissue growth and tumorigenesis. Growing studies have focused on the role of YAP in intestinal epithelial regeneration. This study explore the molecular mechanism for the role YAP in modulating colonic epithelial proliferation, repair, and the development of colitis associated cancer.
METHODS:
We constructed the acute colitis mouse model through successive 5 days of 3% dextran sulfate sodium salt (DSS) induction. Then YAP-overexpressed mouse model was constructed by intraperitoneal injection the YAP overexpressed and negative control lentivirus into DSS mice. On the 5th day of DSS induction and the 5th day of normal drinking water after removing DSS (5+5 d), the mice were killed by spinal dislocation. The colon was taken to measure the length, and the bowel 1-2 cm near the anal canal was selected for immunohistochemical and Western blotting. We used YAP over-expressed colonic epithelial cells and small interfering signal transducer and activator of transcription 3 (STAT3) RNA to probe the regulation of YAP on STAT3, using cell counting kit-8 and scratch assays to explore the role of YAP on colonic epithelial cell proliferation. Finally, we conducted co-immunoprecipitation to test the relationship between YAP and STAT3.
RESULTS:
After DSS treatment, the expression of YAP was dramatically diminished in crypts. Compared with the empty control mice, overexpression of YAP drastically accelerated epithelial regeneration after DSS induced colitis, presenting with more intact of structural integrity in intestinal epithelium and a reduction in the number of inflammatory cells in the mucosa. Further Western blotting, functional experiment and co-immunoprecipitation analyses showed that the expression of YAP in nucleus was significantly increased by 2 h post DSS cessation, accompanied with up-regulated total protein levels of STAT3 and phosphorylated-STAT3 (p-STAT3). Overexpression of YAP enhanced the expression of STAT3, p-STAT3, and their transcriptional targets including c-Myc and Cyclin D1. In addition, it promoted the proliferation and the "wound healing" of colonic cells. However, these effects were reversed when silencing STAT3 on YAP-overexpressed FHC cells. Moreover, protein immunoprecipitation indicated that YAP could directly interact with STAT3 in the nucleus, up-regulatvng the expressvon of STAT3. Finally, during the process of CAC, overexpression of YAP mutant caused the down-regulated expression of STAT3 and inhibited the development and progress of CAC.
CONCLUSIONS
YAP activates STAT3 signaling in regulation of epithelial cell proliferation and promotes mucosal regeneration after DSS induced colitis, which may serve as a potential therapeutic target in UC. However, persistent and excessive YAP activation may promote CAC development.
Animals
;
Mice
;
Cell Proliferation
;
Colitis/drug therapy*
;
Colon/metabolism*
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Intestinal Mucosa
;
Mice, Inbred C57BL
;
Neoplasm Recurrence, Local/metabolism*
;
STAT3 Transcription Factor/metabolism*
;
YAP-Signaling Proteins/metabolism*
10.Methods for the evaluation of intestinal mucosal permeability.
Jing-Ting YAN ; Qi SUN ; Xiao-Li ZHANG ; Jing-Hua LIU ; Xiao-Yan FENG ; Jin-Xia ZHU
Acta Physiologica Sinica 2022;74(4):596-608
The intestinal mucosal barrier (IMB), which consists of mechanical barrier, chemical barrier, biological barrier and immune barrier, plays an important role in the maintenance of intestinal epithelium integrity and defense against invasion of bacteria, endotoxins and foreign antigens. Impaired IMB, characterized by increased intestinal mucosal permeability (IMP) and decreased transmembrane resistance (TR), has been implicated in the pathogenesis of various digestive, urinary, circulatory, neurological and metabolic dysfunctions. Electrophysiological recording of TR in the ex vivo intestinal tissues or cultured epithelial cell monolayers, or biochemical quantification of transepithelial movement of orally-administered molecular probes or specific endogenous protein molecules has frequently been used in the evaluation of IMB. In this paper, the composition and function of IMB will be summarized, with emphasis on the evaluation methods of IMP.
Cells, Cultured
;
Inosine Monophosphate/metabolism*
;
Intestinal Mucosa
;
Permeability

Result Analysis
Print
Save
E-mail