1.A Novel Retrograde AAV Variant for Functional Manipulation of Cortical Projection Neurons in Mice and Monkeys.
Yefei CHEN ; Jingyi WANG ; Jing LIU ; Jianbang LIN ; Yunping LIN ; Jinyao NIE ; Qi YUE ; Chunshan DENG ; Xiaofei QI ; Yuantao LI ; Ji DAI ; Zhonghua LU
Neuroscience Bulletin 2024;40(1):90-102
Retrograde adeno-associated viruses (AAVs) are capable of infecting the axons of projection neurons and serve as a powerful tool for the anatomical and functional characterization of neural networks. However, few retrograde AAV capsids have been shown to offer access to cortical projection neurons across different species and enable the manipulation of neural function in non-human primates (NHPs). Here, we report the development of a novel retrograde AAV capsid, AAV-DJ8R, which efficiently labeled cortical projection neurons after local administration into the striatum of mice and macaques. In addition, intrastriatally injected AAV-DJ8R mediated opsin expression in the mouse motor cortex and induced robust behavioral alterations. Moreover, AAV-DJ8R markedly increased motor cortical neuron firing upon optogenetic light stimulation after viral delivery into the macaque putamen. These data demonstrate the usefulness of AAV-DJ8R as an efficient retrograde tracer for cortical projection neurons in rodents and NHPs and indicate its suitability for use in conducting functional interrogations.
Animals
;
Haplorhini
;
Axons
;
Motor Neurons
;
Interneurons
;
Macaca
;
Dependovirus/genetics*
;
Genetic Vectors
2.Bi-directional Control of Synaptic Input Summation and Spike Generation by GABAergic Inputs at the Axon Initial Segment.
Ziwei SHANG ; Junhao HUANG ; Nan LIU ; Xiaohui ZHANG
Neuroscience Bulletin 2023;39(1):1-13
Differing from other subtypes of inhibitory interneuron, chandelier or axo-axonic cells form depolarizing GABAergic synapses exclusively onto the axon initial segment (AIS) of targeted pyramidal cells (PCs). However, the debate whether these AIS-GABAergic inputs produce excitation or inhibition in neuronal processing is not resolved. Using realistic NEURON modeling and electrophysiological recording of cortical layer-5 PCs, we quantitatively demonstrate that the onset-timing of AIS-GABAergic input, relative to dendritic excitatory glutamatergic inputs, determines its bi-directional regulation of the efficacy of synaptic integration and spike generation in a PC. More specifically, AIS-GABAergic inputs promote the boosting effect of voltage-activated Na+ channels on summed synaptic excitation when they precede glutamatergic inputs by >15 ms, while for nearly concurrent excitatory inputs, they primarily produce a shunting inhibition at the AIS. Thus, our findings offer an integrative mechanism by which AIS-targeting interneurons exert sophisticated regulation of the input-output function in targeted PCs.
Axon Initial Segment
;
Axons/physiology*
;
Neurons
;
Synapses/physiology*
;
Pyramidal Cells/physiology*
;
Interneurons/physiology*
;
Action Potentials/physiology*
3.Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1683-1702
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Mice
;
Animals
;
Epilepsy, Temporal Lobe/pathology*
;
Parvalbumins/metabolism*
;
Parkinson Disease/pathology*
;
Neurons/metabolism*
;
Interneurons/physiology*
;
Disease Models, Animal
;
Brain/pathology*
4.Correlation Analysis of Molecularly-Defined Cortical Interneuron Populations with Morpho-Electric Properties in Layer V of Mouse Neocortex.
Jun-Wei CAO ; Xiao-Yi MAO ; Liang ZHU ; Zhi-Shuo ZHOU ; Shao-Na JIANG ; Lin-Yun LIU ; Shu-Qing ZHANG ; Yinghui FU ; Wen-Dong XU ; Yong-Chun YU
Neuroscience Bulletin 2023;39(7):1069-1086
Cortical interneurons can be categorized into distinct populations based on multiple modalities, including molecular signatures and morpho-electrical (M/E) properties. Recently, many transcriptomic signatures based on single-cell RNA-seq have been identified in cortical interneurons. However, whether different interneuron populations defined by transcriptomic signature expressions correspond to distinct M/E subtypes is still unknown. Here, we applied the Patch-PCR approach to simultaneously obtain the M/E properties and messenger RNA (mRNA) expression of >600 interneurons in layer V of the mouse somatosensory cortex (S1). Subsequently, we identified 11 M/E subtypes, 9 neurochemical cell populations (NCs), and 20 transcriptomic cell populations (TCs) in this cortical lamina. Further analysis revealed that cells in many NCs and TCs comprised several M/E types and were difficult to clearly distinguish morpho-electrically. A similar analysis of layer V interneurons of mouse primary visual cortex (V1) and motor cortex (M1) gave results largely comparable to S1. Comparison between S1, V1, and M1 suggested that, compared to V1, S1 interneurons were morpho-electrically more similar to M1. Our study reveals the presence of substantial M/E variations in cortical interneuron populations defined by molecular expression.
Mice
;
Animals
;
Neocortex/physiology*
;
Mice, Transgenic
;
Interneurons/physiology*
5.Functional Autapses Form in Striatal Parvalbumin Interneurons but not Medium Spiny Projection Neurons.
Xuan WANG ; Zhenfeng SHU ; Quansheng HE ; Xiaowen ZHANG ; Luozheng LI ; Xiaoxue ZHANG ; Liang LI ; Yujie XIAO ; Bo PENG ; Feifan GUO ; Da-Hui WANG ; Yousheng SHU
Neuroscience Bulletin 2023;39(4):576-588
Autapses selectively form in specific cell types in many brain regions. Previous studies have also found putative autapses in principal spiny projection neurons (SPNs) in the striatum. However, it remains unclear whether these neurons indeed form physiologically functional autapses. We applied whole-cell recording in striatal slices and identified autaptic cells by the occurrence of prolonged asynchronous release (AR) of neurotransmitters after bursts of high-frequency action potentials (APs). Surprisingly, we found no autaptic AR in SPNs, even in the presence of Sr2+. However, robust autaptic AR was recorded in parvalbumin (PV)-expressing neurons. The autaptic responses were mediated by GABAA receptors and their strength was dependent on AP frequency and number. Further computer simulations suggest that autapses regulate spiking activity in PV cells by providing self-inhibition and thus shape network oscillations. Together, our results indicate that PV neurons, but not SPNs, form functional autapses, which may play important roles in striatal functions.
Parvalbumins/metabolism*
;
Corpus Striatum/metabolism*
;
Interneurons/physiology*
;
Neurons/metabolism*
;
Neostriatum
6.RhoGEF Trio Regulates Radial Migration of Projection Neurons via Its Distinct Domains.
Chengwen WEI ; Mengwen SUN ; Xiaoxuan SUN ; Hu MENG ; Qiongwei LI ; Kai GAO ; Weihua YUE ; Lifang WANG ; Dai ZHANG ; Jun LI
Neuroscience Bulletin 2022;38(3):249-262
The radial migration of cortical pyramidal neurons (PNs) during corticogenesis is necessary for establishing a multilayered cerebral cortex. Neuronal migration defects are considered a critical etiology of neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia, epilepsy, and intellectual disability (ID). TRIO is a high-risk candidate gene for ASDs and ID. However, its role in embryonic radial migration and the etiology of ASDs and ID are not fully understood. In this study, we found that the in vivo conditional knockout or in utero knockout of Trio in excitatory precursors in the neocortex caused aberrant polarity and halted the migration of late-born PNs. Further investigation of the underlying mechanism revealed that the interaction of the Trio N-terminal SH3 domain with Myosin X mediated the adherence of migrating neurons to radial glial fibers through regulating the membrane location of neuronal cadherin (N-cadherin). Also, independent or synergistic overexpression of RAC1 and RHOA showed different phenotypic recoveries of the abnormal neuronal migration by affecting the morphological transition and/or the glial fiber-dependent locomotion. Taken together, our findings clarify a novel mechanism of Trio in regulating N-cadherin cell surface expression via the interaction of Myosin X with its N-terminal SH3 domain. These results suggest the vital roles of the guanine nucleotide exchange factor 1 (GEF1) and GEF2 domains in regulating radial migration by activating their Rho GTPase effectors in both distinct and cooperative manners, which might be associated with the abnormal phenotypes in neurodevelopmental disorders.
Autism Spectrum Disorder/metabolism*
;
Cell Movement/genetics*
;
Humans
;
Interneurons/metabolism*
;
Neurodevelopmental Disorders/genetics*
;
Neurons/metabolism*
;
Rho Guanine Nucleotide Exchange Factors/genetics*
8.Characterization of electrophysiological properties and changes in gene expression in basket cells during the postnatal development of mouse prefrontal cortex.
Yan-Bing ZHU ; Bing ZHAO ; Ya-Qiang ZHANG ; Huan WANG ; Yuhualei PAN ; Yu-Shang ZHAO ; Dong-Min YIN
Acta Physiologica Sinica 2022;74(4):525-533
This study aims to explore the electrophysiological properties and changes in gene expression of basket cells, a unique population of GABAergic interneurons expressing parvalbumin (PV), during the postnatal development of mouse prefrontal cortex (PFC). Toward this goal, we took use of the G42 transgenic mouse line which specifically expresses enhanced green fluorescent protein (EGFP) in basket cells. The brain slices of PFC were prepared from the postnatal 7 (P7), 14 (P14) and 21 days (P42) G42 mice and whole-cell patch clamp recording was performed in basket cells. In addition, we sorted the basket cells by flow cytometry and analyzed their transcription profiling on P7, P14, and P21 using RNA-seq technology. The results showed that the resting membrane potential and membrane input resistance decreased gradually from P7 to P21. The amplitude and duration of action potential of basket cells increased and decreased from P7 to P21, respectively. In contrast, the threshold of action potential of basket cells did not have a significant change from P7 to P21. The frequency of spontaneous excitatory postsynaptic currents (sEPSCs) of basket cells increased gradually, while the amplitudes of sEPSCs of basket cells remained constant from P7 to P21. RNA sequencing from basket cells revealed that the expression of 22 and 660 genes was upregulated and downregulated from P7 to P14, respectively. By contrast, the expression of 107 and 69 genes was upregulated and downregulated from P14 to P21, respectively. The differentially expressed genes in basket cells from P7 to P21 were significantly enriched in pathways such as neuron apoptotic process, mRNA processing, Golgi vesicle transport and axon guidance. Altogether, we characterized electrophysiological properties and changes in gene expression of basket cells during the postnatal development in mouse PFC. These results provide insight into the mechanisms underlying the development of basket cells in mouse cortex.
Animals
;
Gene Expression
;
Interneurons/metabolism*
;
Mice
;
Mice, Transgenic
;
Parvalbumins/metabolism*
;
Prefrontal Cortex/metabolism*
9.Distinct recruitment dynamics of chandelier cells and basket cells by thalamocortical inputs.
Kai ZHANG ; Bai-Hui REN ; Yi-Lin TAI ; Jiang-Teng LYU
Acta Physiologica Sinica 2022;74(5):697-704
Diverse types of GABAergic interneurons tend to specialize in their inhibitory control of various aspects of cortical circuit operations. Among the most distinctive interneuron types, chandelier cells (i.e., axo-axonic cells) are a bona fide cell type that specifically innervates pyramidal cells at the axon initial segment, the site of action potential initiation. Chandelier cells have been speculated to exert ultimate inhibitory control over pyramidal cell spiking. Thus, chandelier cells appear to share multiple similarities with basket cells, not only in firing pattern (fast spiking) and molecular components, but also in potentially perisomatic inhibitory control. Unlike basket cells, however, synaptic recruitment of chandelier cells is little known yet. Here, we examined the mediodorsal thalamocortical input to both chandelier cells and basket cells in medial prefrontal cortex, through combining mouse genetic, optogenetic and electrophysiological approaches. We demonstrated that this thalamocortical input produced initially weak, but facilitated synaptic responses at chandelier cells, which enabled chandelier cells to spike persistently. In contrast, this thalamocortical input evoked initially strong, but rapidly depressed synaptic responses at basket cells, and basket cells only fired at the initiation of input. Overall, the distinct synaptic recruitment dynamics further underscores the differences between chandelier cells and basket cells, suggesting that these two types of fast spiking interneurons play different roles in cortical circuit processing and physiological operation.
Mice
;
Animals
;
Neurons/physiology*
;
Pyramidal Cells/physiology*
;
Interneurons
;
Action Potentials/physiology*
;
Synaptic Transmission
10.A Critical Role for γCaMKII in Decoding NMDA Signaling to Regulate AMPA Receptors in Putative Inhibitory Interneurons.
Xingzhi HE ; Yang WANG ; Guangjun ZHOU ; Jing YANG ; Jiarui LI ; Tao LI ; Hailan HU ; Huan MA
Neuroscience Bulletin 2022;38(8):916-926
CaMKII is essential for long-term potentiation (LTP), a process in which synaptic strength is increased following the acquisition of information. Among the four CaMKII isoforms, γCaMKII is the one that mediates the LTP of excitatory synapses onto inhibitory interneurons (LTPE→I). However, the molecular mechanism underlying how γCaMKII mediates LTPE→I remains unclear. Here, we show that γCaMKII is highly enriched in cultured hippocampal inhibitory interneurons and opts to be activated by higher stimulating frequencies in the 10-30 Hz range. Following stimulation, γCaMKII is translocated to the synapse and becomes co-localized with the postsynaptic protein PSD-95. Knocking down γCaMKII prevents the chemical LTP-induced phosphorylation and trafficking of AMPA receptors (AMPARs) in putative inhibitory interneurons, which are restored by overexpression of γCaMKII but not its kinase-dead form. Taken together, these data suggest that γCaMKII decodes NMDAR-mediated signaling and in turn regulates AMPARs for expressing LTP in inhibitory interneurons.
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
Hippocampus/metabolism*
;
Interneurons/physiology*
;
Long-Term Potentiation/physiology*
;
N-Methylaspartate/metabolism*
;
Receptors, AMPA/physiology*
;
Receptors, N-Methyl-D-Aspartate/metabolism*
;
Synapses/physiology*

Result Analysis
Print
Save
E-mail