1.Effect of naringenin on the anti-inflammatory, vascularization, and osteogenesis differentiation of human periodontal ligament stem cells via the stromal cell-derived factor 1/C-X-C motif chemokine receptor 4 signaling axis stimulated by lipopolysaccharide.
Shenghong LI ; Shiyuan PENG ; Xiaoling LUO ; Yipei WANG ; Xiaomei XU
West China Journal of Stomatology 2023;41(2):175-184
		                        		
		                        			OBJECTIVES:
		                        			This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.
		                        		
		                        			METHODS:
		                        			Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.
		                        		
		                        			RESULTS:
		                        			We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).
		                        		
		                        			CONCLUSIONS
		                        			Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Anti-Inflammatory Agents/pharmacology*
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Chemokine CXCL12
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			Periodontal Ligament/metabolism*
		                        			;
		                        		
		                        			Receptors, Chemokine/metabolism*
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Interleukin-8/metabolism*
		                        			
		                        		
		                        	
2.Dermatophagoides farinae induces conjunctival epithelial cell damage to promote neutrophil migration and neutrophil extracellular traps formation.
Meili WU ; Ru YAN ; Wenjun ZHAO
Chinese Journal of Schistosomiasis Control 2023;35(3):271-278
		                        		
		                        			OBJECTIVE:
		                        			To investigate the mechanisms underlying allergic conjunctivitis caused by conjunctival epithelial cell damage, neutrophil migration and neutrophil extracellular traps (NETs) formation induced by crude extracts of Dermatophagoides farinae mite (CDM).
		                        		
		                        			METHODS:
		                        			Human conjunctival epithelial cells were stimulated with 500, 1 000, 2 000, 4 000 ng/mL, and the expression levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ) and IL-8 were detected using quantitative real-time PCR (qPCR) assay and enzyme-linked immunosorbent assay (ELISA). The culture supernatant of human conjunctival epithelial cells was collected and co-cultured with neutrophils. Neutrophil migration was measured using Transwell migration assay, and the expression of NETs markers myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) was quantified using immunofluorescence staining. Neutrophils were stimulated with phorbol 12-myristate 13-acetate (PMA), and then NETs were collected for treatment of human conjunctival epithelial cells. Cell apoptosis was detected using flow cytometry, and the levels of IL-6, TNF-α, IFN-γ and IL-8 were measured in the cell culture supernatant using ELISA.
		                        		
		                        			RESULTS:
		                        			Treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL up-regulated IL-6, TNF-α, IFN-γ and IL-8 expression in human conjunctival epithelial cells. Following treatment with CDM at concentrations of 2 000 ng/mL and 4 000 ng/mL, the culture supernatant of human conjunctival epithelial cells promoted neutrophil migration and induced increases in the staining intensity of MPO and CitH3. In addition, increased NETs triggered the apoptosis of human conjunctival epithelial cells and IL-6, TNF-α, IFN-γ and IL-8 secretion in the culture supernatant of human conjunctival epithelial cells.
		                        		
		                        			CONCLUSIONS
		                        			CDM induces human conjunctival epithelial cell damages, thereby promoting neutrophil migration and NETs formation, while the release of NETs further aggravates human conjunctival epithelial cell damages.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Extracellular Traps
		                        			;
		                        		
		                        			Neutrophils
		                        			;
		                        		
		                        			Interleukin-8/metabolism*
		                        			;
		                        		
		                        			Dermatophagoides farinae
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Epithelial Cells
		                        			;
		                        		
		                        			Interferon-gamma/metabolism*
		                        			;
		                        		
		                        			Tetradecanoylphorbol Acetate/pharmacology*
		                        			
		                        		
		                        	
3.Mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination in treatment of bronchial asthma based on network pharmacology and experimental verification.
Bei-Bei ZHANG ; Meng-Nan ZENG ; Qin-Qin ZHANG ; Ru WANG ; Ju-Fang JIA ; Peng-Li GUO ; Meng LIU ; Wei-Sheng FENG ; Xiao-Ke ZHENG
China Journal of Chinese Materia Medica 2022;47(18):4996-5007
		                        		
		                        			
		                        			This study aims to investigate mechanism of "Ephedrae Herba-Descurainiae Semen Lepidii Semen" combination(MT) in the treatment of bronchial asthma based on network pharmacology and in vivo experiment, which is expected to lay a theoretical basis for clinical application of the combination. First, the potential targets of MT in the treatment of bronchial asthma were predicted based on network pharmacology, and the "Chinese medicine-active component-target-pathway-disease" network was constructed, followed by Gene Oncology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the potential targets. Molecular docking was used to determine the binding activity of key candidate active components to hub genes. Ovalbumin(OVA, intraperitoneal injection for sensitization and nebulization for excitation) was used to induce bronchial asthma in rats. Rats were classified into control group(CON), model group(M), dexamethasone group(DEX, 0.075 mg·kg~(-1)), and MT(1∶1.5) group. Hematoxylin and eosin(HE), Masson, and periodic acid-Schiff(PAS) staining were performed to observe the effect of MT on pathological changes of lungs and trachea and goblet cell proliferation in asthma rats. The levels of transforming growth factor(TGF)-β1, interleukin(IL)6, and IL10 in rat serum were detected by enzyme-linked immunosorbent assay(ELISA), and the mRNA and protein levels of mitogen-activated protein kinase 8(MAPK8), cyclin D1(CCND1), IL6, epidermal growth factor receptor(EGFR), phosphatidylinositol 3-kinase(PI3 K), and protein kinase B(Akt) by qRT-PCR and Western blot. Network pharmacology predicted that MAPK8, CCND1, IL6, and EGFR were the potential targets of MT in the treatment of asthma, which may be related to PI3 K/Akt signaling pathway. Quercetin and β-sitosterol in MT acted on a lot of targets related to asthma, and molecular docking results showed that quercetin and β-sitosterol had strong binding activity to MAPK, PI3 K, and Akt. In vivo experiment showed that MT could effectively alleviate the symptoms of OVA-induced asthma rats, improve the pathological changes of lung tissue, reduce the production of goblet cells, inhibit the inflammatory response of asthma rats, suppress the expression of MAPK8, CCND1, IL6, and EGFR, and regulate the PI3 K/Akt signaling pathway. Therefore, MT may relieve the symptoms and inhibit inflammation of asthma rats by regulating the PI3 K/Akt signaling pathway, and quercetin and β-sitosterol are the candidate active components.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Asthma/drug therapy*
		                        			;
		                        		
		                        			Cyclin D1
		                        			;
		                        		
		                        			Dexamethasone/adverse effects*
		                        			;
		                        		
		                        			Drug Combinations
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/therapeutic use*
		                        			;
		                        		
		                        			Eosine Yellowish-(YS)/adverse effects*
		                        			;
		                        		
		                        			Ephedra
		                        			;
		                        		
		                        			ErbB Receptors
		                        			;
		                        		
		                        			Hematoxylin/therapeutic use*
		                        			;
		                        		
		                        			Interleukin-10
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinase 8/therapeutic use*
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Ovalbumin/adverse effects*
		                        			;
		                        		
		                        			Periodic Acid/adverse effects*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Quercetin
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			Rats
		                        			
		                        		
		                        	
4.Gastric cancer-derived mesenchymal stem cells regulate the M2 polarization of macrophages within gastric cancer microenvironment via JAK2/STAT3 signaling pathway.
Wei LI ; Shao Lin ZHAO ; Ping ZHENG ; Pei Qin SHI ; Ying ZHOU ; Ting ZHANG ; Juan HUO ; Jin YANG
Chinese Journal of Oncology 2022;44(7):728-736
		                        		
		                        			
		                        			Objective: To investigate the role and mechanism of tumor-derived mesenchymal stem cells in regulating the M2 polarization of macrophages within gastric cancer microenvironment. Methods: Gastric cancer tissues and the adjacent non-cancerous tissues were collected from patients underwent gastric cancer resection in the First People's Hospital of Lianyungang during 2018. In our study, THP-1-differentiated macrophages were co-cultured with gastric cancer-derived mesenchymal stem cells (GC-MSCs). Then, the M2 subtype-related gene, the markers expressed on cell surface and the cytokine profile were analyzed by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), flow cytometry and Luminex liquid chip, respectively. The key cytokines mediating the inducing effect of GC-MSCs on macrophage polarization into the M2 subtype were detected and screened by Luminex liquid chip, which were further confirmed by the neutralizing antibody test. The expressions of macrophage proteins involved in M2 polarization-related signaling pathways under the different co-culture conditions of GC-MSCs were detected by western blot. Results: In Mac+ GC-MSC-culture medium (CM) group, the expression levels of Ym-1 and Fizz-1 (1.53±0.32 and 13.22±1.05, respectively), which are markers for M2 subtype, were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.60±0.41) was significantly lower than that of Mac group (1.06±0.38, P=0.023). In Mac+ GC-MSC-Transwell (TW) group, the expression levels of Ym-1 and Fizz-1 (1.47±0.09 and 13.16±2.77, respectively) were both significantly higher than those of Mac group (1.00±0.05 and 1.21±0.38, respectively, P<0.05). The level of iNOS in Mac+ GC-MSC-CM group (0.56±0.03) was significantly lower than that of Mac group (1.06±0.38, P=0.026). The ratios of CD163(+) /CD204(+) cells in Mac+ GC-MSC-CM and Mac+ GC-MSC-TW groups (3.80% and 4.40%, respectively) were both remarkably higher than that of Mac group (0.60%, P<0.05). The expression levels of IL-10, IL-6, MCP-1 and VEGF in Mac+ GC-MSC-CM group were (592.60±87.52), (1 346.80±64.70), (11 256.00±29.03) and (1 463.90±66.67) pg/ml, respectively, which were significantly higher than those of Mac group [(41.03±2.59), (17.35±1.79), (5 213.30±523.71) and (267.12±12.06) pg/ml, respectively, P<0.05]. The levels of TNF-α, IP-10, RANTES and MIP-1α were (95.57±9.34), (410.48±40.68), (6 967.30±1.29) and (1 538.70±283.04) pg/ml, which were significantly lower than those of Mac group [(138.01±24.31, (1 298.60±310.50), (14 631.00±4.21) and (6 633.20±1.47) pg/ml, respectively, P<0.05]. The levels of IL-6 and IL-8 in GC-MSCs [(11 185.02±2.82) and (12 718.03±370.17) pg/ml, respectively] were both strikingly higher than those of MSCs from adjacent non-cancerous gastric cancer tissues [(270.71±59.38) and (106.04±32.84) pg/ml, repectively, P<0.05]. The ratios of CD86(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (28.80% and 31.40%, respectively) were both higher than that of Mac+ GC-MSC-CM group (24.70%). Compared to Mac+ GC-MSC-CM group (13.70%), the ratios of CD204(+) cells in Mac+ IL-6-blocked-GC-MSC-CM and Mac+ IL-8-blocked-GC-MSC-CM groups (9.90% and 8.70%, separately) were reduced. The expression levels of p-JAK2 and p-STAT3, which are proteins of macrophage M2 polarization-related signaling pathway, in Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, respectively) were significantly higher than those of Mac group (0.50±0.01 and 0.82±0.01, respectively, P<0.05). The expression levels of p-JAK2 in Mac+ IL-6-blocked-GC-MSC-CM group (0.47±0.02) were significantly lower those that of Mac+ GC-MSC-CM group (0.86±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-8-blocked-GC-MSC-CM group (0.50±0.01 and 0.85±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). The expression levels of p-JAK2 and p-STAT3 in Mac+ IL-6/IL-8-blocked-GC-MSC-CM group (0.37±0.01 and 0.65±0.01, respectively) were both significantly lower than those of Mac+ GC-MSC-CM group (0.86±0.01 and 1.08±0.01, P<0.05). Conclusion: GC-MSCs promote the activation of JAK2/STAT3 signaling pathway in macrophages via high secretions of IL-6 and IL-8, which subsequently induce the macrophage polarization into a pro-tumor M2 subtype within gastric cancer microenvironment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6/genetics*
		                        			;
		                        		
		                        			Interleukin-8/pharmacology*
		                        			;
		                        		
		                        			Janus Kinase 2/metabolism*
		                        			;
		                        		
		                        			Macrophages/metabolism*
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			;
		                        		
		                        			STAT3 Transcription Factor/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Stomach Neoplasms/pathology*
		                        			;
		                        		
		                        			Tumor Microenvironment
		                        			
		                        		
		                        	
5.Regulatory effect of Di'ao Xinxuekang on TLR4/MyD88/NF-κB signaling pathway in atherosclerotic rats.
Wei-Zhi ZHANG ; Guo-Ying LI ; Qin QI ; Sha NA ; Lei LYU ; Guang-Liang CHEN
China Journal of Chinese Materia Medica 2020;45(3):602-608
		                        		
		                        			
		                        			The aim of this paper was to observe the effect of Di'ao Xinxuekang(DXXK) on TLR4/MyD88/NF-κB signaling pathway in atherosclerotic rats, and to explore its anti-atherosclerotic mechanism. Sixty SD rats were randomly divided into normal group, model group, atorvastatin group(4.0 mg·kg~(-1)), and DXXK groups(100, 30, 10 mg·kg~(-1)), with 10 rats in each group. The atherosclerosis model was induced by high fat diet plus vitamin D_2. Experimental drugs were administered intragastrically once daily for 8 weeks starting from the 9 th week. Biochemical analyzers were used to detect levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C) and high-density lipoprotein cholesterol(HDL-C) in blood lipid. The levels of serum tumor necrosis factor(TNF)-α, interleukin(IL)-6 and IL-1β were detected by ELISA. Pathological changes of aortic tissues were observed by using Sudan Ⅳ and HE staining. The mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in aortic tissues were detected by RT-PCR and Western blot, respectively. As compared with the model group, TC, TG, and LDL-C levels in serum were significantly decreased, HDL-C content was significantly increased, and levels of TNF-α, IL-6, and IL-1β in serum were significantly decreased in atorvastatin group and DXXK high and middle dose groups. Aortic lesions in atorvastatin group and DXXK group were significantly improved, and the mRNA and protein expressions of TLR4, MyD88, NF-κB p65 in the aorta were decreased. DXXK has a preventive and therapeutic effect on atherosclerosis in rats, and its mechanism may be related to inhibiting inflammatory reaction by regulating TLR4/MyD88/NF-κB signal transduction, thereby inhibiting the progression of atherosclerosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta/pathology*
		                        			;
		                        		
		                        			Atherosclerosis/drug therapy*
		                        			;
		                        		
		                        			Atorvastatin
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			;
		                        		
		                        			Interleukin-6/blood*
		                        			;
		                        		
		                        			Interleukin-8/blood*
		                        			;
		                        		
		                        			Lipids/blood*
		                        			;
		                        		
		                        			Myeloid Differentiation Factor 88/metabolism*
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism*
		                        			;
		                        		
		                        			Transcription Factor RelA/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/blood*
		                        			
		                        		
		                        	
6.Fosfomycin tromethamine inhibits the expressions of TNF-α, IL-8 and IL-6 in the prostate tissue of rats with chronic bacterial prostatitis.
Wen-Wei CAI ; Dun-Sheng MO ; Ming FAN ; Hong-Cai CAI ; Guo-Wei ZHANG ; Wei-Piong WANG ; Xue-Jun SHANG
National Journal of Andrology 2018;24(6):491-498
ObjectiveTo investigate the effects of fosfomycin tromethamine (FT) on the expressions of tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-6 (IL-6) in the prostate tissue of the rats with chronic bacterial prostatitis (CBP).
METHODSWe randomly divided 70 male SD rats into 7 groups of equal number: blank control, CBP model control, positive control, 14 d low-dose FT, 7 d low-dose FT, 14 d high-dose FT, and 7 d high-dose FT. The CBP model rats in the latter five groups were treated intragastrically with levofloxacin at 100 mg/kg/d for 30 days and FT at 200 mg/kg/d for 14 and 7 days and at 300 mg/kg/d for 14 and 7 days, respectively. Then we collected the prostate tissue from the animals for determination of the levels of TNF-α, IL-8 and IL-6 by ELISA.
RESULTSCompared with the blank controls, the CBP model rats showed significantly increased levels of TNF-α ([19.83 ± 6.1] vs [32.93 ± 6.21] ng/g prot, P <0.01), IL-8 ([8.26 ± 0.52] vs [16.2 ± 2.84] ng/g prot, P <0.01) and IL-6 ([1.55 ± 0.11] vs [2.51 ± 1.06] ng/g prot, P <0.05) in the prostate tissue. In comparison with the CBP model controls, the levels of TNF-α and IL-8 were remarkably decreased in the groups of positive control ([20.54 ± 5.78] ng/g prot, P <0.01; [12.43 ± 4.02] ng/g prot, P <0.05), 14 d low-dose FT ([21.95 ± 6.48] ng/g prot, P <0.01; [11.11 ± 2.86] ng/g prot, P <0.01), 7 d low-dose FT ([23.8 ± 6.93] ng/g prot, P <0.05; [12.43 ± 4.02] ng/g prot, P <0.05), 14 d high-dose FT ([19.97 ± 2.58] ng/g prot, P <0.01; [8.83 ± 1.32] ng/g prot, P <0.01), and 7 d high-dose FT ([21.97 ± 3.38] ng/g prot, P <0.01; [12.68±1.97] ng/g prot, P <0.05). No statistically significant differences were observed between the positive control and FT groups in the contents of TNF-α, IL-8 or IL-6 (P >0.05). The expression of IL-6 was markedly reduced in the 14 d high-dose FT group as compared with the model controls ([1.76 ± 0.46] vs [2.51 ± 1.06] ng/g prot, P<0.05) but exhibited no significant difference between the CBP model control and the other groups (P >0.05).
CONCLUSIONSFosfomycin tromethamine inhibits the expressions of TNF-α, IL-8 and IL-6 in the prostate tissue, suppresses its inflammatory reaction, promotes the repair of damaged prostatic structure, and thus contributes to the treatment of chronic bacterial prostatitis in rats.
Animals ; Anti-Bacterial Agents ; pharmacology ; Bacterial Infections ; drug therapy ; microbiology ; Fosfomycin ; pharmacology ; Interleukin-6 ; metabolism ; Interleukin-8 ; metabolism ; Levofloxacin ; pharmacology ; Male ; Prostate ; drug effects ; metabolism ; Prostatitis ; drug therapy ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Tumor Necrosis Factor-alpha ; metabolism
7.Upregulated Expression of Secretory Leukocyte Protease Inhibitor in Lung by Inhalation of High Concentration of Sulfur Dioxide.
Lei LIU ; Zhuang MA ; Wen-Wu SUN ; Jian-Ping CAO
Chinese Medical Journal 2018;131(16):2005-2007
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Electrophoresis, Polyacrylamide Gel
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-8
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lung
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Secretory Leukocyte Peptidase Inhibitor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Sulfur Dioxide
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Effect of two administration routes of Shenmai Injection () on pulmonary gas exchange function after tourniquet-induced ischemia-reperfusion.
Jian-Guo JIN ; Hai-Jian SHEN ; Yuan-Lu SHAN ; Lei CHEN ; Xi-Yue ZHAO ; Liang-Rong WANG ; Li-Na LIN
Chinese journal of integrative medicine 2017;23(1):18-24
OBJECTIVETo compare the effect between nebulized and intravenous administration of Shenmai Injection () on pulmonary gas exchange function of patients following tourniquet-induced lower limb ischemia-reperfusion.
METHODSThirty-eight patients scheduled for lower extremity surgery were randomized into three groups using the closed envelop method: Shenmai Injection was administered 30 min before tourniquet inflflation by nebulization [0.6 mL/kg in 10 mL normal saline (NS)] in the nebulization group or by intravenous drip (0.6 mL/kg dissolved in 250 mL of 10% glucose) in the intravenous drip group, and equal volume of NS was given intravenously in the NS group; 15 in each group. Arterial blood gases were analyzed, serum levels of malonaldehyde (MDA) and interleukine-6 (IL-6) and interleukine-8 (IL-8) were determined using the method of thiobarbituric acid reaction and enzyme-linked immuno sorbent assay respectively just before tourniquet inflflation (T0), and at 0.5 h (T1), 2 h (T2), 6 h (T3) after tourniquet deflflation.
RESULTSCompared with baselines at T0, MDA levels signifificantly increased at T2, T3 in the NS group and at T3 in the nebulization group, and IL-6 and IL-8 levels were signifificantly increased at T2, T3 in NS, the intravenous drip and the nebulization groups (P <0.05). Arterial pressure of oxygen (PaO) at T3 was decreased, while alveolararterial oxygen tension showed difference (PA-aDO) at T3 in the NS group; RI at T3 in both intravenous drip and the nebulization groups were enhanced (P <0.05). Compared with the NS group, MDA and IL-8 levels at T2, T3, IL-6 at T3 in the intravenous drip group, and IL-8 at T3 in the nebulization group were all remarkably increased (P <0.05). Additionally, MDA level at T3 in the nebulization group was higher than that in the intravenous drip group (P <0.05).
CONCLUSIONSIntravenous administration of Shenmai Injection provided a better protective effect than nebulization in mitigating pulmonary gas exchange dysfunction in patients following tourniquet-induced limb ischemia-reperfusion.
Adult ; Blood Gas Analysis ; Drug Administration Routes ; Drug Combinations ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; therapeutic use ; Female ; Humans ; Injections ; Interleukin-6 ; blood ; Interleukin-8 ; blood ; Male ; Malondialdehyde ; blood ; Pulmonary Gas Exchange ; drug effects ; Reperfusion Injury ; blood ; drug therapy ; physiopathology ; Tourniquets ; adverse effects
9.Protective Effect of Total Flavones of Bidens pilosa L. on IgA1 Induced Injury of HUVECs in Henoch-Schönlein Purpura Children Patients.
Wen-jun FEI ; Li-ping YUAN ; Ling LU ; Jin-gui GUI
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(2):183-187
OBJECTIVETo explore the protective effect and mechanism of total flavones of Bidens pilosa L. (TFB) on IgA1 induced injury of venous endothelial cells in Henoch-Schönlein purpura (HSP) children patients. METHODS Human umbilical venous endothelial cells (HUVECs) were taken as subject. They were intervened by normal IgA1 and HSP children patients' serum IgA1, and added with different concentrations TFB at the same time. Then they were divided into the blank control group, the normal control group, the HSP IgA1 group, and HSP IgA1 plus TFB (1.0, 0.5, 0.25 mg/mL) groups. Levels of TNF-α and IL-8 in supernate were detected by ELISA. The NO level was detected by nitrate reductase method. mRNA and protein expressions of NF-κB and ICAM-1 in HUVECs were detected by fluorescent quantitative PCR and Western blot respectively.
RESULTSCompared with the normal control group and the blank control group, levels of IL-8, TNF-α, and NO all significantly increased in the HSP group (P < 0.05). Compared with the HSP group, levels of IL-8, TNF-α, and NO significantly decreased after intervention of TFB (1.0 and 0.5 mg/mL; P < 0.05, P < 0.01). Results of fluorescent quantitative PCR and Western blot showed, as compared with the blank control group and the normal control group, mRNA and protein expressions of NF-κB and ICAM-1 in HSP children patients' serum IgA1 induced venous endothelial cells significantly increased with statistical difference (P < 0.05, P < 0.01). Compared with the HSP group, mRNA and protein expressions of NF-KB and ICAM-1 were obviously down-regulated after intervention of TFB (1.0, 0.5, 0.25 mg/mL), with statistical difference (P < 0.05, P < 0.01).
CONCLUSIONTFB could protect vascular damage by inhibiting in vivo high expression of NF-κB, reducing the production of IL-8, TNF-α, and NO in vascular endothelial cells of HSP children patients.
Bidens ; chemistry ; Child ; Flavones ; pharmacology ; Human Umbilical Vein Endothelial Cells ; drug effects ; Humans ; Immunoglobulin A ; blood ; Intercellular Adhesion Molecule-1 ; metabolism ; Interleukin-8 ; metabolism ; NF-kappa B ; metabolism ; Nitric Oxide ; metabolism ; Purpura, Schoenlein-Henoch ; blood ; RNA, Messenger ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
10.alpha-Lipoic Acid Inhibits Expression of IL-8 by Suppressing Activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-Infected Gastric Epithelial AGS Cells.
Ji Hyun CHOI ; Soon Ok CHO ; Hyeyoung KIM
Yonsei Medical Journal 2016;57(1):260-264
		                        		
		                        			
		                        			The epithelial cytokine response, associated with reactive oxygen species (ROS), is important in Helicobacter pylori (H. pylori)-induced inflammation. H. pylori induces the production of ROS, which may be involved in the activation of mitogen-activated protein kinases (MAPK), janus kinase/signal transducers and activators of transcription (Jak/Stat), and oxidant-sensitive transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappaB), and thus, expression of interleukin-8 (IL-8) in gastric epithelial cells. alpha-lipoic acid, a naturally occurring thiol compound, is a potential antioxidant. It shows beneficial effects in treatment of oxidant-associated diseases including diabetes. The present study is purposed to investigate whether alpha-lipoic acid inhibits expression of inflammatory cytokine IL-8 by suppressing activation of MAPK, Jak/Stat, and NF-kappaB in H. pylori-infected gastric epithelial cells. Gastric epithelial AGS cells were pretreated with or without alpha-lipoic acid for 2 h and infected with H. pylori in a Korean isolate (HP99) at a ratio of 300:1. IL-8 mRNA expression was analyzed by RT-PCR analysis. IL-8 levels in the medium were determined by enzyme-linked immunosorbent assay. NF-kappaB-DNA binding activity was determined by electrophoretic mobility shift assay. Phospho-specific and total forms of MAPK and Jak/Stat were assessed by Western blot analysis. ROS levels were determined using dichlorofluorescein fluorescence. As a result, H. pylori induced increases in ROS levels, mRNA, and protein levels of IL-8, as well as the activation of MAPK [extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun NH2-terminal kinase 1/2 (JNK1/2), p38], Jak/Stat (Jak1/2, Stat3), and NF-kappaB in AGS cells, which was inhibited by alpha-lipoic acid. In conclusion, alpha-lipoic acid may be beneficial for prevention and/or treatment of H. pylori infection-associated gastric inflammation.
		                        		
		                        		
		                        		
		                        			Enzyme-Linked Immunosorbent Assay
		                        			;
		                        		
		                        			Epithelial Cells/metabolism
		                        			;
		                        		
		                        			Gastric Mucosa/*drug effects/metabolism/microbiology
		                        			;
		                        		
		                        			Gene Expression Regulation, Bacterial
		                        			;
		                        		
		                        			Helicobacter Infections/immunology/*metabolism
		                        			;
		                        		
		                        			Helicobacter pylori/drug effects/*pathogenicity
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Interleukin-8/genetics/*metabolism
		                        			;
		                        		
		                        			JNK Mitogen-Activated Protein Kinases
		                        			;
		                        		
		                        			Janus Kinase 1
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases/*biosynthesis
		                        			;
		                        		
		                        			NF-kappa B/*metabolism
		                        			;
		                        		
		                        			RNA, Messenger/isolation & purification/metabolism
		                        			;
		                        		
		                        			Reactive Oxygen Species/metabolism
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			;
		                        		
		                        			Stomach/metabolism/*microbiology
		                        			;
		                        		
		                        			Thioctic Acid/*pharmacology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail