1.cGAS/STING signaling pathways induces the secretion of type Ⅰ interferon in porcine alveolar macrophages infected with porcine circovirus type 2.
Hongbo CHEN ; Feng LI ; Wenyan LAI ; Yuhao FANG ; Mingyong JIANG ; Dianning DUAN ; Xiaoyan YANG
Chinese Journal of Biotechnology 2021;37(9):3201-3210
In order to study the signal pathway secreting type Ⅰ interferon in porcine alveolar macrophages (PAMs) infected with porcine circovirus type 2 (PCV2), the protein and the mRNA expression levels of cGAS/STING pathways were analyzed by ELISA, Western blotting and quantitative reverse transcriptase PCR in PAMs infected with PCV2. In addition, the roles of cGAS, STING, TBK1 and NF-κB/P65 in the generation of type I interferon (IFN-I) from PAMs were analyzed by using the cGAS and STING specific siRNA, inhibitors BX795 and BAY 11-7082. The results showed that the expression levels of IFN-I increased significantly at 48 h after infection with PCV2 (P<0.05), the mRNA expression levels of cGAS increased significantly at 48 h and 72 h after infection (P<0.01), the mRNA expression levels of STING increased significantly at 72 h after infection (P<0.01), and the mRNA expression levels of TBK1 and IRF3 increased at 48 h after infection (P<0.01). The protein expression levels of STING, TBK1 and IRF3 in PAMs infected with PCV2 were increased, the content of NF-κB/p65 was decreased, and the nuclear entry of NF-κB/p65 and IRF3 was promoted. After knocking down cGAS or STING expression by siRNA, the expression level of IFN-I was significantly decreased after PCV2 infection for 48 h (P<0.01). BX795 and BAY 11-7082 inhibitors were used to inhibit the expression of IRF3 and NF-κB, the concentration of IFN-I in BX795-treated group was significantly reduced than that of the PCV2 group (P<0.01), while no significant difference was observed between the BAY 11-7028 group and the PCV2 group. The results showed that PAMs infected with PCV2 induced IFN-I secretion through the cGAS/STING/TBK1/IRF3 signaling pathway.
Animals
;
Cells, Cultured
;
Circovirus
;
Interferon Type I/genetics*
;
Macrophages, Alveolar/virology*
;
Membrane Proteins/metabolism*
;
Nucleotidyltransferases/metabolism*
;
Signal Transduction
;
Swine
2.Identification of new type I interferon-stimulated genes and investigation of their involvement in IFN-β activation.
Xiaolin ZHANG ; Wei YANG ; Xinlu WANG ; Xuyuan ZHANG ; Huabin TIAN ; Hongyu DENG ; Liguo ZHANG ; Guangxia GAO
Protein & Cell 2018;9(9):799-807
Virus infection induces the production of type I interferons (IFNs). IFNs bind to their heterodimeric receptors to initiate downstream cascade of signaling, leading to the up-regulation of interferon-stimulated genes (ISGs). ISGs play very important roles in innate immunity through a variety of mechanisms. Although hundreds of ISGs have been identified, it is commonly recognized that more ISGs await to be discovered. The aim of this study was to identify new ISGs and to probe their roles in regulating virus-induced type I IFN production. We used consensus interferon (Con-IFN), an artificial alpha IFN that was shown to be more potent than naturally existing type I IFN, to treat three human immune cell lines, CEM, U937 and Daudi cells. Microarray analysis was employed to identify those genes whose expressions were up-regulated. Six hundred and seventeen genes were up-regulated more than 3-fold. Out of these 617 genes, 138 were not previously reported as ISGs and thus were further pursued. Validation of these 138 genes using quantitative reverse transcription PCR (qRT-PCR) confirmed 91 genes. We screened 89 genes for those involved in Sendai virus (SeV)-induced IFN-β promoter activation, and PIM1 was identified as one whose expression inhibited SeV-mediated IFN-β activation. We provide evidence indicating that PIM1 specifically inhibits RIG-I- and MDA5-mediated IFN-β signaling. Our results expand the ISG library and identify PIM1 as an ISG that participates in the regulation of virus-induced type I interferon production.
Cells, Cultured
;
Gene Library
;
Humans
;
Interferon Type I
;
metabolism
;
Interferon-beta
;
genetics
;
metabolism
;
Proto-Oncogene Proteins c-pim-1
;
genetics
;
Up-Regulation
3.Research progress on the role of TANK-binding kinase 1 in anti-virus innate immune response.
Xue WANG ; Yuchuan ZHANG ; Wei CHEN
Journal of Zhejiang University. Medical sciences 2016;45(5):550-557
The innate immune response against viral infection is mainly relies on type I interferon, the production of which is mediated by TANK-binding kinase 1 (TBK1). It is revealed that the downstream TBK1 is activated by viral nucleic acid sensors RIG-I, cGAS and TLR3. The activity of TBK1 is complexly and precisely regulated by different type of protein modifications, including phosphorylation, ubiquitination and Sumolylation. This article focuses on the role of TBK1 in anti-viral innate immunity and the regulatory mechanism for the TBK1 activation.
Humans
;
Immunity, Innate
;
genetics
;
physiology
;
Interferon Type I
;
Phosphorylation
;
Protein Processing, Post-Translational
;
immunology
;
Protein-Serine-Threonine Kinases
;
chemistry
;
physiology
;
Signal Transduction
;
Ubiquitination
;
Virus Diseases
;
physiopathology
4.Death receptor 6 is a novel plasmacytoid dendritic cell-specific receptor and modulates type I interferon production.
Jingyun LI ; Qiumei DU ; Rui HU ; Yanbing WANG ; Xiangyun YIN ; Haisheng YU ; Peishuang DU ; Joël PLUMAS ; Laurence CHAPEROT ; Yong-Jun LIU ; Liguo ZHANG
Protein & Cell 2016;7(4):291-294
Dendritic Cells
;
cytology
;
metabolism
;
Enzyme-Linked Immunosorbent Assay
;
HEK293 Cells
;
Humans
;
Interferon Regulatory Factor-7
;
metabolism
;
Interferon Type I
;
metabolism
;
Interferon-gamma
;
analysis
;
Interleukin-6
;
analysis
;
Oligonucleotides
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptors, Tumor Necrosis Factor
;
antagonists & inhibitors
;
genetics
;
metabolism
5.DNA sensor cGAS-mediated immune recognition.
Pengyan XIA ; Shuo WANG ; Pu GAO ; Guangxia GAO ; Zusen FAN
Protein & Cell 2016;7(11):777-791
The host takes use of pattern recognition receptors (PRRs) to defend against pathogen invasion or cellular damage. Among microorganism-associated molecular patterns detected by host PRRs, nucleic acids derived from bacteria or viruses are tightly supervised, providing a fundamental mechanism of host defense. Pathogenic DNAs are supposed to be detected by DNA sensors that induce the activation of NFκB or TBK1-IRF3 pathway. DNA sensor cGAS is widely expressed in innate immune cells and is a key sensor of invading DNAs in several cell types. cGAS binds to DNA, followed by a conformational change that allows the synthesis of cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) from adenosine triphosphate and guanosine triphosphate. cGAMP is a strong activator of STING that can activate IRF3 and subsequent type I interferon production. Here we describe recent progresses in DNA sensors especially cGAS in the innate immune responses against pathogenic DNAs.
DNA, Bacterial
;
immunology
;
metabolism
;
DNA, Viral
;
immunology
;
metabolism
;
Gene Expression Regulation
;
Host-Pathogen Interactions
;
Humans
;
Immunity, Innate
;
Interferon Regulatory Factor-3
;
genetics
;
immunology
;
Interferon Type I
;
biosynthesis
;
immunology
;
Membrane Proteins
;
genetics
;
immunology
;
Models, Molecular
;
NF-kappa B
;
genetics
;
immunology
;
Nucleotides, Cyclic
;
biosynthesis
;
immunology
;
Nucleotidyltransferases
;
genetics
;
immunology
;
Protein Binding
;
Protein-Serine-Threonine Kinases
;
genetics
;
immunology
;
Signal Transduction
6.Astragaloside IV regulates STAT1/IκB/NF-κB signaling pathway to inhibit activation of BV-2 cells.
Yi-xin HE ; Hai-lian SHI ; Hong-shuai LIU ; Hui WU ; Bei-bei ZHANG ; Xiao-jun WU ; Zheng-tao WANG
China Journal of Chinese Materia Medica 2015;40(1):124-128
OBJECTIVEThe study was aimed to investigate the inhibitory effect and mechanism of astragaloside IV (ASI) on the activation of microglial cells.
METHODAfter pre-incubated with ASI for 2 h, microglial cells BV-2 were stimulated with interferon-γ (IFN-γ) for 1. 5 h and 24 h, respectively. Secretion of nitric oxide (NO) in the medium was measured by Griess method. Production of tumor necrosis factor alpha (TNF-α) was detected by ELISA approach. Cellular gene expressions of CD11b, TNF-α, interleukin 1β (IL-1β) and induced nitric oxide synthase (iNOS) were examined by quantitative-PCR analysis. Total and phosphorylation of STAT1, IκB and NF-κB was analyzed by Western blot method.
RESULTASI could significantly inhibit the increased secretion of TNF-α and NO from BV-2 cells upon IFN-γ stimulation (P < 0.001). Further study showed that ASI significantly down-regulated gene expression of IL-1β and TNF-α (P < 0.01, P < 0.05) and exhibited a trend to reduce that of iNOS. IFN-γ and ASI have no obvious effect on gene expression of CD11b. Moreover, ASI inhibited the phosphorylation of STAT1, IκB and NF-κB elicited by IFN-γ stimulation.
CONCLUSIONASI could restrain microglial activation through interfering STAT1/IκB/NF-κB signaling pathway, reducing gene expres- sion of IL-1β and TNF-α, and thus inhibiting the production of proinflammatory mediators such as NO and TNF-α.
Animals ; Astragalus Plant ; chemistry ; Drugs, Chinese Herbal ; pharmacology ; I-kappa B Proteins ; genetics ; metabolism ; Interferon-gamma ; genetics ; metabolism ; Mice ; NF-kappa B ; genetics ; metabolism ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; metabolism ; STAT1 Transcription Factor ; genetics ; metabolism ; Saponins ; pharmacology ; Signal Transduction ; drug effects ; Triterpenes ; pharmacology
7.Human BDCA2+CD123+CD56+ dendritic cells (DCs) related to blastic plasmacytoid dendritic cell neoplasm represent a unique myeloid DC subset.
Haisheng YU ; Peng ZHANG ; Xiangyun YIN ; Zhao YIN ; Quanxing SHI ; Ya CUI ; Guanyuan LIU ; Shouli WANG ; Pier Paolo PICCALUGA ; Taijiao JIANG ; Liguo ZHANG
Protein & Cell 2015;6(4):297-306
Dendritic cells (DCs) comprise two functionally distinct subsets: plasmacytoid DCs (pDCs) and myeloid DCs (mDCs). pDCs are specialized in rapid and massive secretion of type I interferon (IFN-I) in response to nucleic acids through Toll like receptor (TLR)-7 or TLR-9. In this report, we characterized a CD56(+) DC population that express typical pDC markers including CD123 and BDCA2 but produce much less IFN-I comparing with pDCs. In addition, CD56(+) DCs cluster together with mDCs but not pDCs by genome-wide transcriptional profiling. Accordingly, CD56(+) DCs functionally resemble mDCs by producing IL-12 upon TLR4 stimulation and priming naïve T cells without prior activation. These data suggest that the CD56(+) DCs represent a novel mDC subset mixed with some pDC features. A CD4(+)CD56(+) hematological malignancy was classified as blastic plasmacytoid dendritic cell neoplasm (BPDCN) due to its expression of characteristic molecules of pDCs. However, we demonstrated that BPDCN is closer to CD56(+) DCs than pDCs by global gene-expression profiling. Thus, we propose that the CD4(+)CD56(+) neoplasm may be a tumor counterpart of CD56(+) mDCs but not pDCs.
Biomarkers
;
metabolism
;
CD56 Antigen
;
genetics
;
immunology
;
Cell Lineage
;
genetics
;
immunology
;
Dendritic Cells
;
immunology
;
metabolism
;
pathology
;
Gene Expression
;
Hematologic Neoplasms
;
genetics
;
immunology
;
pathology
;
Humans
;
Immunophenotyping
;
Interferon Type I
;
biosynthesis
;
metabolism
;
Interleukin-12
;
biosynthesis
;
metabolism
;
Interleukin-3 Receptor alpha Subunit
;
genetics
;
immunology
;
Lectins, C-Type
;
genetics
;
immunology
;
Membrane Glycoproteins
;
genetics
;
immunology
;
Myeloid Cells
;
immunology
;
metabolism
;
pathology
;
Receptors, Immunologic
;
genetics
;
immunology
;
Terminology as Topic
;
Toll-Like Receptor 4
;
genetics
;
immunology
;
Toll-Like Receptor 7
;
genetics
;
immunology
;
Toll-Like Receptor 9
;
genetics
;
immunology
8.SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex.
Xiaojuan CHEN ; Xingxing YANG ; Yang ZHENG ; Yudong YANG ; Yaling XING ; Zhongbin CHEN
Protein & Cell 2014;5(5):369-381
SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored PLpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKKε-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKKε, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3-TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which PLpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.
Dimerization
;
HEK293 Cells
;
Humans
;
I-kappa B Kinase
;
metabolism
;
Interferon Regulatory Factor-3
;
metabolism
;
Interferon Type I
;
antagonists & inhibitors
;
metabolism
;
Membrane Proteins
;
chemistry
;
genetics
;
metabolism
;
Papain
;
metabolism
;
Peptide Hydrolases
;
chemistry
;
metabolism
;
Phosphorylation
;
Protein Binding
;
Protein Structure, Tertiary
;
Protein-Serine-Threonine Kinases
;
metabolism
;
SARS Virus
;
enzymology
;
Signal Transduction
;
TNF Receptor-Associated Factor 3
;
metabolism
;
Ubiquitination
9.Distinct evolution process among type I interferon in mammals.
Lei XU ; Limin YANG ; Wenjun LIU
Protein & Cell 2013;4(5):383-392
Interferon (IFN) is thought to play an important role in the vertebrate immune system, but systemic knowledge of IFN evolution has yet to be elucidated. To evaluate the phylogenic distribution and evolutionary history of type I IFNs, 13genomes were searched using BLASTn program, and a phylogenetic tree of vertebrate type I IFNs was constructed. In the present study, an IFNδ-like gene in the human genome was identified, refuting the concept that humans have no IFNδ genes, and other mammalian IFN genes were also identified. In the phylogenetic tree, the mammalian IFNβ, IFNɛ, and IFNκ formed a clade separate from the other mammalian type I IFNs, while piscine and avian IFNs formed distinct clades. Based on this phylogenetic analysis and the various characteristics of type I IFNs, the evolutionary history of type I IFNs was further evaluated. Our data indicate that an ancestral IFNα-like gene forms a core from which new IFNs divided during vertebrate evolution. In addition, the data suggest how the other type I IFNs evolved from IFNα and shaped the complex type I IFN system. The promoters of type I IFNs were conserved among different mammals, as well as their genic regions. However, the intergenic regions of type I IFN clusters were not conserved among different mammals, demonstrating a high selection pressure upon type I IFNs during their evolution.
Amino Acid Sequence
;
genetics
;
Animals
;
Evolution, Molecular
;
Humans
;
Immune System
;
Interferon Type I
;
classification
;
genetics
;
Mammals
;
genetics
;
immunology
;
Phylogeny
10.Herpesviral infection and Toll-like receptor 2.
Ming-sheng CAI ; Mei-li LI ; Chun-fu ZHENG
Protein & Cell 2012;3(8):590-601
In the last decade, substantial progress has been made in understanding the molecular mechanisms involved in the initial host responses to viral infections. Herpesviral infections can provoke an inflammatory cytokine response, however, the innate pathogen-sensing mechanisms that transduce the signal for this response are poorly understood. In recent years, it has become increasingly evident that the Toll-like receptors (TLRs), which are germline-encoded pattern recognition receptors (PRRs), function as potent sensors for infection. TLRs can induce the activation of the innate immunity by recruiting specific intracellular adaptor proteins to initiate signaling pathways, which then culminating in activation of the nuclear factor kappa B (NF-κB) and interferon-regulatory factors (IRFs) that control the transcription of genes encoding type I interferon (IFN I) and other inflammatory cytokines. Furthermore, activation of innate immunity is critical for mounting adaptive immune responses. In parallel, common mechanisms used by viruses to counteract TLR-mediated responses or to actively subvert these pathways that block recognition and signaling through TLRs for their own benefit are emerging. Recent findings have demonstrated that TLR2 plays a crucial role in initiating the inflammatory process, and surprisingly that the response TLR2 triggers might be overzealous in its attempt to counter the attack by the virus. In this review, we summarize and discuss the recent advances about the specific role of TLR2 in triggering inflammatory responses in herpesvirus infection and the consequences of the alarms raised in the host that they are assigned to protect.
Adaptive Immunity
;
Gene Expression Regulation
;
immunology
;
Herpesviridae
;
physiology
;
Herpesviridae Infections
;
genetics
;
immunology
;
virology
;
Host-Pathogen Interactions
;
Humans
;
Immune Evasion
;
Immunity, Innate
;
Interferon Regulatory Factors
;
genetics
;
metabolism
;
Interferon Type I
;
biosynthesis
;
immunology
;
NF-kappa B
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
;
immunology
;
Toll-Like Receptor 2
;
genetics
;
immunology

Result Analysis
Print
Save
E-mail