1.Progress in Application of Concentrated Growth Factor in Oral Tissue Regeneration.
Ying LU ; Si-Jun WANG ; Duo-Hong ZOU
Acta Academiae Medicinae Sinicae 2023;45(3):500-505
Tissue regeneration is an important engineering method for the treatment of oral soft and hard tissue defects.Growth factors,as one of the three elements of tissue regeneration,are a necessary condition for tissue regeneration.Concentrated growth factor(CGF)is a new generation of blood extract prepared by changing the centrifugal speed on the basis of the preparation of platelet-rich plasma(PRP)and platelet-rich fibrin(PRF).It contains abundant growth factors and a fibrin matrix with a three-dimensional network structure,being capable of activating angiogenesis and promoting tissue regeneration and healing.CGF has been widely used in the repair and regeneration of oral soft and hard tissues.This paper introduces the preparation and composition of CGF and reviews the application of CGF in oral implantation and the regeneration of oral bone tissue,periodontal tissue,and dental pulp tissue.
Platelet-Rich Plasma/metabolism*
;
Platelet-Rich Fibrin
;
Cell Proliferation
;
Bone and Bones
;
Intercellular Signaling Peptides and Proteins/metabolism*
;
Bone Regeneration
2.Coordinated Regulation of Myelination by Growth Factor and Amino-acid Signaling Pathways.
Zhiwen YANG ; Zongyan YU ; Bo XIAO
Neuroscience Bulletin 2023;39(3):453-465
Myelin-forming oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS) are essential for structural and functional homeostasis of nervous tissue. Albeit with certain similarities, the regulation of CNS and PNS myelination is executed differently. Recent advances highlight the coordinated regulation of oligodendrocyte myelination by amino-acid sensing and growth factor signaling pathways. In this review, we discuss novel insights into the understanding of differential regulation of oligodendrocyte and Schwann cell biology in CNS and PNS myelination, with particular focus on the roles of growth factor-stimulated RHEB-mTORC1 and GATOR2-mediated amino-acid sensing/signaling pathways. We also discuss recent progress on the metabolic regulation of oligodendrocytes and Schwann cells and the impact of their dysfunction on neuronal function and disease.
Amino Acids
;
Myelin Sheath/metabolism*
;
Schwann Cells/metabolism*
;
Oligodendroglia/metabolism*
;
Signal Transduction
;
Intercellular Signaling Peptides and Proteins/metabolism*
3.Research progress of the regulation of orphan nuclear receptors on chronic liver diseases.
Zhi-Hui YANG ; Jia-Hui WANG ; Lei WANG ; Xue-Lin DUAN ; Hong-Hong WANG ; Yue PENG ; Tie-Jian ZHAO ; Yang ZHENG
Acta Physiologica Sinica 2023;75(4):555-568
The development of chronic liver disease can be promoted by excessive fat accumulation, dysbiosis, viral infections and persistent inflammatory responses, which can lead to liver inflammation, fibrosis and carcinogenesis. An in-depth understanding of the etiology leading to chronic liver disease and the underlying mechanisms influencing its development can help identify potential therapeutic targets for targeted treatment. Orphan nuclear receptors (ONRs) are receptors that have no corresponding endogenous ligands to bind to them. The study of these ONRs and their biological properties has facilitated the development of synthetic ligands, which are important for investigating the effective targets for the treatment of a wide range of diseases. In recent years, it has been found that ONRs are essential for maintaining normal liver function and their dysfunction can affect a variety of liver diseases. ONRs can influence pathophysiological activities such as liver lipid metabolism, inflammatory response and cancer cell proliferation by regulating hormones/transcription factors and affecting the biological clock, oxidative stress, etc. This review focuses on the regulation of ONRs, mainly including retinoid related orphan nuclear receptors (RORs), pregnane X receptor (PXR), leukocyte cell derived chemotaxin 2 (LECT2), Nur77, and hepatocyte nuclear factor 4α (HNF4α), on the development of different types of chronic liver diseases in different ways, in order to provide useful references for the therapeutic strategies of chronic liver diseases based on the regulation of ONRs.
Humans
;
Orphan Nuclear Receptors/metabolism*
;
Receptors, Steroid/physiology*
;
Ligands
;
Liver
;
Liver Diseases
;
Intercellular Signaling Peptides and Proteins
4.Clinical Significance of SFRP1 Gene Methylation in Patients with Childhood Acute Lymphoblastic Leukemia.
Jing YAN ; Wen-Peng WANG ; Xuan LI ; Wei HAN ; Feng-Qi QI ; Ji-Zhao GAO
Journal of Experimental Hematology 2023;31(2):377-382
OBJECTIVE:
To investigate the clinical significance of SFRP1 gene and its methylation in childhood acute lymphoblastic leukemia (ALL) .
METHODS:
Methylation-specific PCR (MSP) was used to detect the methylation status of SFRP1 gene in bone marrow mononuclear cells of 43 children with newly diagnosed ALL before chemotherapy (primary group) and when the bone marrow reached complete remission d 46 after induction of remission chemotherapy (remission group), the expression of SFRP1 mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR), the expression of SFRP1 protein was detected by Western blot, and clinical data of children were collected, the clinical significance of SFRP1 gene methylation in children with ALL was analyze.
RESULTS:
The positive rate of SFRP1 gene promoter methylation in the primary group (44.19%) was significantly higher than that in the remission group (11.63%) (χ2=11.328, P<0.05). The relative expression levels of SFRP1 mRNA and protein in bone marrow mononuclear cells of children in the primary group were significantly lower than those in the remission group (P<0.05). Promoter methylation of SFRP1 gene was associated with risk level (χ2=15.613, P=0.000) and survival of children (χ2=6.561, P=0.010) in the primary group, children with SFRP1 hypermethylation had significantly increased risk and shortened event-free survival time, but no significant difference in other clinical data.
CONCLUSION
Hypermethylation of SFRP1 gene promoter may be involved in the development of childhood ALL, and its hypermethylation may be associated with poor prognosis.
Child
;
Humans
;
Clinical Relevance
;
DNA Methylation
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics*
;
Bone Marrow/metabolism*
;
RNA, Messenger/metabolism*
;
Membrane Proteins/genetics*
;
Intercellular Signaling Peptides and Proteins/metabolism*
5.Research advances on biomaterials for the delivery of growth factors to regulate wound repair.
Ting Ting WENG ; Cheng Hao CAI ; Chun Mao HAN ; Xin Gang WANG
Chinese Journal of Burns 2022;38(7):691-696
Wound repair is a highly coordinated and mutually regulated complex process involving various kinds of cells, extracellular matrices and cytokines. A variety of growth factors play an important regulatory role in wound healing, and it is critical to achieve effective delivery and sustained function of growth factors. In recent years, the application of biomaterials in tissue engineering has shown great potential, and the effective delivery of growth factors by biomaterials has attracted increasing attention. Based on this, this paper introduces the mechanism of related growth factors in the process of wound healing, focusing on the recent progress of biomaterial delivery of growth factors to accelerate wound healing, in order to provide new enlightenment for clinical wound treatment.
Biocompatible Materials/metabolism*
;
Extracellular Matrix/metabolism*
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Tissue Engineering
;
Wound Healing
6.Identification and verification of key cancer genes associated with prognosis of colorectal cancer based on bioinformatics analysis.
Yi QIN ; Lu CHEN ; Lizhang CHEN
Journal of Central South University(Medical Sciences) 2021;46(10):1063-1070
OBJECTIVES:
The biomarkers targeting colorectal cancer (CRC) prognosis are short of high accuracy and sensitivity in clinic. Through bioinformatics analysis, we aim to identify and confirm a series of key genes referred to the diagnosis and prognosis of CRC.
METHODS:
GSE31905, GSE35279, and GSE41657 were selected as complete RNA sequencing data sets of CRC and colorectal mucosa (CRM) tissues from the NCBI-GEO database, and the differentially expressed genes (DEGs) were analyzed. The common DEGs in these 3 data sets were obtained by Venn map, and enriched by STRING network system and Cytoscape software. The Kaplan-Meier plotter website was used to verify the correlation between the enriched genes and the prognosis of CRC.
RESULTS:
For the whole RNA sequencing data sets of CRC and normal intestinal mucosa samples, the DEGs of CRC and CRM in the 3 data sets (|log
CONCLUSIONS
The above 11 genes verified by bioinformatics retrieval and analysis can predict the poor prognosis of CRC to a certain extent, and they provide a possible target for the diagnosis and treatment of CRC.
Biomarkers, Tumor/metabolism*
;
Colorectal Neoplasms/genetics*
;
Computational Biology
;
Formins
;
Gene Expression Profiling
;
Gene Expression Regulation, Neoplastic
;
Glycoproteins
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Oncogenes
;
Prognosis
;
Protein Interaction Maps
7.Association of NLRC3 with prognosis and tumor immunity in patients with stage III colorectal cancer.
Dan WANG ; Qian PEI ; Fengbo TAN ; Yuan ZHOU ; Kangtao WANG ; Haiping PEI
Journal of Central South University(Medical Sciences) 2019;44(5):535-543
To explore the association of nucleotide binding oligomerization domain-like receptor family caspase recruitment domain containing 3 (NLRC3) with prognosis and tumor immunity in patients with stage III colorectal cancer.
Methods: Data of 122 patients with stage III colorectal cancer, who underwent radical resection from 2012 to 2013 in Xiangya Hospital of Central South University, were retrospectively collected. The expressions of NLRC3 and CD8+ were examined by immumohistochemical (IHC) staining. The preoperative clinical data were used to obtain neutrophil to lymphocyte ratio (NLR), and the stability of microsatellite was determined. The relationship between NLRC3 and clinicopathological factors was analyzed by χ2 test, and the independent prognostic factors for patients with stage III colorectal cancer were determined by COX regression model.
Results: The expression of NLRC3 was significantly associated with CD8+ T cells infiltration (χ2=27.79, P<0.01), NLR (χ2=6.35, P<0.05), lymph node metastasis (LN) (χ2=10.12, P<0.01) and microsatellite stability (χ2=6.05, P<0.05). NLRC3 (OR=0.066, 95% CI 0.020 to 0.218), vascular emboli (OR=3.119, 95% CI 1.547 to 6.286) and NLR (OR=5.103, 95% CI 2.465 to 10.563) had an effect on overall survival (OS) for patients with stage III colorectal cancer (all P<0.05). In addition, NLRC3 (OR=0.144, 95% CI 0.055 to 0.377), vascular emboli (OR=3.589, 95% CI 1.859 to 6.932) and NLR (OR=2.939, 95% CI 1.509 to 5.723) also had an effect on disease-free survival (DFS) for patients with stage III colorectal cancer (all P<0.05).
Conclusion: NLRC3, intravascular emboli and NLR are independent prognostic factors for patients with stage III colorectal cancer. NLRC3 might be a good prognostic factor for patients with stage III colorectal cancer due to its capacity of inhibiting systemic inflammation and promoting local anti-tumor immunity.
Colorectal Neoplasms
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Lymphocytes
;
Neoplasm Staging
;
Neutrophils
;
Prognosis
;
Retrospective Studies
8.Inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction.
Ya-Qin ZHOU ; Da-Wei ZHANG ; Li-Ying YU ; Ying WEI ; Hong-Zhen TANG ; Shi-Ling YANG ; Xiao-Ming TAN
China Journal of Chinese Materia Medica 2019;44(9):1808-1813
To determine the inhibitory effect of endophytic fungi from Dysosma versipellis on HIV-1 IN-LEDGF/p75 interaction,the protein-protein interaction between human immunodeficiency virus type 1( HIV-1) integrase and lens epithelial growth factor p75 protein( LEDGF/p75) was used as a target. The homogeneous time-resolved fluorescence( HTRF) technique was used in the inhibitory activity assay. The results showed that eight endophytic fungi with anti-IN-LEDGF/p75 interaction activity were screened out from fifty-three strains with different morphological characteristic. Among them,106 strain showed strong inhibitory activity against HIV-1 IN-LEDGF/p75 interaction with IC50 value of 5. 23 mg·L-1,and was identified as a potential novel species of Magnaporthaceae family by the analyses of ITS-rDNA,LSU and RPB2 sequences data. This study demonstrated that potential natural active ingredients against the HIV-1 IN-LEDGF/p75 interaction exist in the endophytic fungi of D. versipellis. These results may provide available candidate strain resources for the research and development of new anti-acquired immunodeficiency syndrome drugs.
Berberidaceae
;
microbiology
;
Endophytes
;
Fungi
;
chemistry
;
HIV Integrase
;
metabolism
;
HIV-1
;
drug effects
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Protein Binding
9.Energy Demand and Its Regulatory Mechanism during Folliculogenesis.
Hao Yan TU ; Xiao Can LEI ; Peng HUO ; Jiang Hua LE ; Shun ZHANG
Acta Academiae Medicinae Sinicae 2019;41(3):408-414
The growth and development of follicles are regulated by genes,hormones and growth factors autocrined and paracrined from granulosa cells,theca cells,and oocytes.Products of glycolysis from granulosa cells such as pyruvate and lactate are one of the main energy sources,which play an important role during folliculogenesis and follicle maturity.Studies on the changes of the products and rate-limiting enzymes during granulosa cells' glycolysis help to clarify the molecular mechanism of energy demand in folliculogenesis and guide the clinical treatment of infertility due to abnormal follicular development.This article reviews recent research advances in the energy demand and regulatory mechanism in different states of folliculogenesis.
Energy Metabolism
;
Female
;
Glycolysis
;
Granulosa Cells
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
Oocytes
;
Ovarian Follicle
;
growth & development
;
Theca Cells
10.Hybrid polymer biomaterials for bone tissue regeneration.
Bo LEI ; Baolin GUO ; Kunal J RAMBHIA ; Peter X MA
Frontiers of Medicine 2019;13(2):189-201
Native tissues possess unparalleled physiochemical and biological functions, which can be attributed to their hybrid polymer composition and intrinsic bioactivity. However, there are also various concerns or limitations over the use of natural materials derived from animals or cadavers, including the potential immunogenicity, pathogen transmission, batch to batch consistence and mismatch in properties for various applications. Therefore, there is an increasing interest in developing degradable hybrid polymer biomaterials with controlled properties for highly efficient biomedical applications. There have been efforts to mimic the extracellular protein structure such as nanofibrous and composite scaffolds, to functionalize scaffold surface for improved cellular interaction, to incorporate controlled biomolecule release capacity to impart biological signaling, and to vary physical properties of scaffolds to regulate cellular behavior. In this review, we highlight the design and synthesis of degradable hybrid polymer biomaterials and focus on recent developments in osteoconductive, elastomeric, photoluminescent and electroactive hybrid polymers. The review further exemplifies their applications for bone tissue regeneration.
Animals
;
Biocompatible Materials
;
Bone Regeneration
;
Humans
;
Intercellular Signaling Peptides and Proteins
;
metabolism
;
Regenerative Medicine
;
Tissue Engineering
;
Tissue Scaffolds

Result Analysis
Print
Save
E-mail