1.Nuclear factor-Y mediates pancreatic β-cell compensation by repressing reactive oxygen species-induced apoptosis under metabolic stress.
Siyuan HE ; Xiaoqian YU ; Daxin CUI ; Yin LIU ; Shanshan YANG ; Hongmei ZHANG ; Wanxin HU ; Zhiguang SU
Chinese Medical Journal 2023;136(8):922-932
BACKGROUND:
Pancreatic β-cells elevate insulin production and secretion through a compensatory mechanism to override insulin resistance under metabolic stress conditions. Deficits in β-cell compensatory capacity result in hyperglycemia and type 2 diabetes (T2D). However, the mechanism in the regulation of β-cell compensative capacity remains elusive. Nuclear factor-Y (NF-Y) is critical for pancreatic islets' homeostasis under physiological conditions, but its role in β-cell compensatory response to insulin resistance in obesity is unclear.
METHODS:
In this study, using obese ( ob/ob ) mice with an absence of NF-Y subunit A (NF-YA) in β-cells ( ob , Nf-ya βKO) as well as rat insulinoma cell line (INS1)-based models, we determined whether NF-Y-mediated apoptosis makes an essential contribution to β-cell compensation upon metabolic stress.
RESULTS:
Obese animals had markedly augmented NF-Y expression in pancreatic islets. Deletion of β-cell Nf-ya in obese mice worsened glucose intolerance and resulted in β-cell dysfunction, which was attributable to augmented β-cell apoptosis and reactive oxygen species (ROS). Furthermore, primary pancreatic islets from Nf-ya βKO mice were sensitive to palmitate-induced β-cell apoptosis due to mitochondrial impairment and the attenuated antioxidant response, which resulted in the aggravation of phosphorylated c-Jun N-terminal kinase (JNK) and cleaved caspase-3. These detrimental effects were completely relieved by ROS scavenger. Ultimately, forced overexpression of NF-Y in INS1 β-cell line could rescue palmitate-induced β-cell apoptosis, dysfunction, and mitochondrial impairment.
CONCLUSION
Pancreatic NF-Y might be an essential regulator of β-cell compensation under metabolic stress.
Rats
;
Mice
;
Animals
;
Reactive Oxygen Species/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Insulin Resistance
;
Insulin
;
Insulin-Secreting Cells/metabolism*
;
Apoptosis
;
Stress, Physiological
;
Transcription Factors/metabolism*
;
Palmitates/pharmacology*
;
Obesity/metabolism*
2.Ferulic acid enhances insulin secretion by potentiating L-type Ca2+ channel activation.
Katesirin RUAMYOD ; Wattana B WATANAPA ; Chanrit KAKHAI ; Pimchanok NAMBUNDIT ; Sukrit TREEWAREE ; Parin WONGSANUPA
Journal of Integrative Medicine 2023;21(1):99-105
OBJECTIVE:
To investigate the effect of ferulic acid, a natural compound, on pancreatic beta cell viability, Ca2+ channels, and insulin secretion.
METHODS:
We studied the effects of ferulic acid on rat insulinoma cell line viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay. The whole-cell patch-clamp technique and enzyme-linked immunosorbent assay were also used to examine the action of ferulic acid on Ca2+ channels and insulin secretion, respectively.
RESULTS:
Ferulic acid did not affect cell viability during exposures up to 72 h. The electrophysiological study demonstrated that ferulic acid rapidly and concentration-dependently increased L-type Ca2+ channel current, shifting its activation curve in the hyperpolarizing direction with a decreased slope factor, while the voltage dependence of inactivation was not affected. On the other hand, ferulic acid have no effect on T-type Ca2+ channels. Furthermore, ferulic acid significantly increased insulin secretion, an effect inhibited by nifedipine and Ca2+-free extracellular fluid, confirming that ferulic acid-induced insulin secretion in these cells was mediated by augmenting Ca2+ influx through L-type Ca2+ channel. Our data also suggest that this may be a direct, nongenomic action.
CONCLUSION
This is the first electrophysiological demonstration that acute ferulic acid treatment could increase L-type Ca2+ channel current in pancreatic β cells by enhancing its voltage dependence of activation, leading to insulin secretion.
Rats
;
Animals
;
Insulin Secretion
;
Insulin/pharmacology*
;
Insulin-Secreting Cells/metabolism*
;
Coumaric Acids/metabolism*
;
Calcium/metabolism*
3.Investigation on the mechanism of acupuncture in treatment of diabetes mellitus type 2 based on the network of islet macrophages-pancreatic adipose cells-islet β cells.
Yun LIU ; Tian-Cheng XU ; Zhi YU ; Bin XU
Chinese Acupuncture & Moxibustion 2022;42(4):433-436
To explore the possible new mechanism of acupuncture in the treatment of diabetes mellitus type 2 (T2DM) based on the islet inflammatory response. Islet macrophages, pancreatic adipose cells and islet β cells all participate in the pathogenesis of T2DM, and the three could form a network interaction. Acupuncture could regulate the functional phenotype of islet macrophages, improve the ectopic deposition of pancreatic adipose and repair the function of islet β cells, and play a unique advantage of overall regulation. It is suggested that acupuncture can be a potential treatment strategy for T2DM.
Acupuncture Therapy
;
Diabetes Mellitus, Type 2/therapy*
;
Humans
;
Insulin-Secreting Cells/pathology*
;
Islets of Langerhans/pathology*
;
Macrophages
4.Acquisition and application of functional pancreatic β cells: a review.
Guiqiyang XIANG ; Qinggui LIU ; Yiping HU ; Minjun WANG ; Fei CHEN
Chinese Journal of Biotechnology 2022;38(9):3316-3328
Insulin is produced and secreted by pancreatic β cells in the pancreas, which plays a key role in maintaining euglycemia. Insufficient secretion or deficient usage of insulin is the main cause of diabetes mellitus (DM). Drug therapy and islets transplantation are classical treatments for DM. Pancreatic β cell replacement therapy could help patients to get rid of drugs and alleviate the problem of lacking in transplantable donors. Pancreatic β-like cells can be acquired by cell reprogramming techniques or directed induction of stem cell differentiation. These cells are proved to be functional both in vitro and in vivo. Some hospitals have already performed clinical trials for pancreatic β cell replacement therapy. Functional pancreatic β-like cells, which obtained from in vitro pathway, could be a reliable source of cell therapy for treating DM. In this review, the approaches of obtaining pancreatic β cells are summarized and the remaining problems are discussed. Some thoughts are provided for further acquisition and application of pancreatic β cells.
Cell Differentiation
;
Diabetes Mellitus/therapy*
;
Humans
;
Insulin/metabolism*
;
Insulin-Secreting Cells/metabolism*
;
Islets of Langerhans Transplantation
;
Pancreas/metabolism*
5.Anti-oxidative and anti-apoptotic effects and molecular mechanisms of catalpol against H_2O_2-induced oxidative damage in pancreatic β cells (INS-1 cells).
Xin XIAO ; Wen-Hua XU ; Xiao-Qing ZHANG ; Jun-Feng DING ; Yue JIANG ; Jun TU
China Journal of Chinese Materia Medica 2022;47(16):4403-4410
The present study investigated the anti-oxidative and anti-apoptotic effects and molecular mechanisms of catalpol on the H_2O_2-induced pancreatic β-cells(INS-1 cells).The oxidative damage model of INS-1 cells was induced and optimized by the stimulation of H_2O_2 of different concentrations for different time.CCK-8 assay was used to detect cell viability after catalpol intervention(1, 5, 10, 20, 40, 80, and 160 μmol·L~(-1)) for 24 h.Intracellular reactive oxygen species(ROS), superoxide dismutase(SOD), and lipid peroxide malondialdehyde(MDA) were measured by DCFH-DA fluorescent probe, WST-1, and TBA respectively.Moreover, the apo-ptotic effect was detected by AO-EB and Annexin V-FITC/PI staining.In addition, the protein expression levels were detected by Wes-tern blot, and intracellular insulin concentration was measured by ELISA.The results showed that the oxidative damage model of INS-1 cells was stably induced by 50 μmol·L~(-1) H_2O_2 treatment for 2 h, and catalpol at 1-80 μmol·L~(-1) did not affect cell viability of INS-1 cells.Compared with the conditions in the model group, 1, 5, and 10 μmol·L~(-1) catalpol intervention for 2 h could protect INS-1 cells from oxidative damage(P<0.001), reduce ROS and MDA, increase SOD, and inhibit excessive cell apoptosis.Moreover, 1, 5, and 10 μmol·L~(-1) catalpol could also up-regulate the phosphorylation of nuclear transcription factor NF-E2 related factors, negatively regulate Kelch-like ECH-associated protein 1(Keap1), phosphorylation of extracellular signal-regulated kinase(ERK), and heme oxyge-nase 1(HO-1), and promote the protein expression of pancreatic-duodenal homeobox factor-1(PDX-1) and glucose transporter 2(GLUT2).In addition, 1, 5, and 10 μmol·L~(-1) catalpol increased insulin secretion of INS-1 cells under oxidative damage in the high-glucose culture medium, indicating function recovery of pancreatic β cells.PDX-1 is a key nuclear transcription factor of pancreatic β cell function that directly regulates GLUT2 and insulin synthesis, and affects glucose homeostasis.In conclusion, catalpol can reduce the oxidative damage and apoptosis of INS-1 cells, activate antioxidant pathway, protect the function of pancreatic β cells, and improve insulin synthesis and secretion.
Apoptosis
;
Glucose/metabolism*
;
Insulin/metabolism*
;
Insulin-Secreting Cells/metabolism*
;
Iridoid Glucosides
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
Superoxide Dismutase/metabolism*
6.Molecular mechanism of geniposide in regulating GLUT2 glycosylation in pancreatic β cells.
Xiao-Qing JIANG ; Shen-Li SHEN ; Wei-Zhao LI ; Xing-Ke XU ; Fei YIN
China Journal of Chinese Materia Medica 2021;46(14):3643-3649
Type 2 diabetes mellitus( T2 DM) is a common chronic metabolic disease characterized by persistent hyperglycemia and insulin resistance. In pancreatic β-cells,glucose-stimulated insulin secretion( GSIS) plays a pivotal role in maintaining the balance of blood glucose level. Previous studies have shown that geniposide,one of the active components of Gardenia jasminoides,could quickly regulate the absorption and metabolism of glucose,and affect glucose-stimulated insulin secretion in pancreatic β cells,but the specific mechanism needs to be further explored. Emerging evidence indicated that glycosylation of glucose transporter( GLUT) has played a key role in sensing cell microenvironmental changes and regulating glucose homeostasis in eucaryotic cells. In this study,we studied the effects of geniposide on the key molecules of GLUT2 glycosylation in pancreatic β cells. The results showed that geniposide could significantly up-regulate the mRNA and protein levels of Glc NAc T-Ⅳa glycosyltransferase( Gn T-Ⅳa) and galectin-9 but had no signi-ficant effect on the expression of clathrin,and geniposide could distinctively regulate the protein level of Gn T-Ⅳa in a short time( 1 h) under the conditions of low and medium glucose concentrations,but had no significant effect on the protein level of galectin-9. In addition,geniposide could also remarkably affect the protein level of glycosylated GLUT2 in a short-time treatment. The above results suggested that geniposide could quickly regulate the protein level of Gn T-Ⅳa,a key molecule of protein glycosylation in INS-1 rat pancreatic βcells and affect the glycosylation of GLUT2. These findings suggested that the regulation of geniposide on glucose absorption,metabolism and glucose-stimulated insulin secretion might be associated with its efficacy in regulating GLUT2 glycosylation and affecting its distribution on the cell membrane and cytoplasm in pancreatic β cells.
Animals
;
Diabetes Mellitus, Type 2/metabolism*
;
Glucose/metabolism*
;
Glycosylation
;
Insulin/metabolism*
;
Insulin-Secreting Cells/metabolism*
;
Iridoids
;
Rats
7.Mechanism of Jinqi Jiangtang Tablets in treatment of pancreatic β cell dysfunction based on network pharmacology and molecular docking technology.
Ming-Yue HUANG ; Zhen-Zhen WANG ; Jiang-Lan LONG ; Xin-Yu YANG ; Yi ZHANG ; Dan YAN
China Journal of Chinese Materia Medica 2021;46(20):5341-5350
The present study investigated the therapeutic efficacy and potential mechanism of Jinqi Jiangtang Tablets(JQJT) on pancreatic β cell dysfunction based on network pharmacology and molecular docking technology. TCMSP platform was used to retrieve the chemical components and targets of the three Chinese herbal medicines of JQJT. The genes were converted to gene symbol by the UniProt, and its intersection with targets related to pancreatic β cell function in GeneCards and CTD databases was obtained. The drugs, active components and common targets were imported into Cytoscape 3.8.2 to plot the drug-component-target network. The main effective components and targets were obtained by software analysis. The drug targets and targets related to pancreatic β cell function were imported separately into the STRING platform for the construction of protein-protein interaction(PPI) networks. The two PPI networks were merged by Cytoscape 3.8.2 and the key targets were obtained by plug-in CytoNCA. The targets obtained from drug-component-target network and PPI networks were imported into DAVID for GO analysis and KEGG enrichment analysis. AutoDock was used to carry out molecular docking of main active components and core targets and Pymol was used to plot the molecular docking diagram. The results showed that there were 371 active components and 203 targets related to JQJT and 2 523 targets related to pancreatic β cell damage, covering 136 common targets. The results revealed core targets(such as PTGS2, PTGS1, NOS2, ESR1 and RXRA) and effective key components(such as quercetin, kaempferol, luteolin, β-carotene and β-sitosterol). KEGG enrichment analysis indicated that apoptosis, inflammation, and other signaling pathways were mainly involved. Molecular docking results showed that the main active components could spontaneously bind to the targets. This study preliminarily revealed the mechanism of JQJT in improving pancreatic β cell damage through multi-component, multi-target and multi-pathway, and provided a theoretical basis for JQJT in the treatment of pancreatic β cell dysfunction.
Drugs, Chinese Herbal/pharmacology*
;
Insulin-Secreting Cells
;
Medicine, Chinese Traditional
;
Molecular Docking Simulation
;
Tablets
;
Technology
8.Divergent effects of lycopene on pancreatic alpha and beta cells.
Wei-Huang LIU ; Qiao-Na WANG ; Ying ZHOU ; Yan-Jun WANG ; Zan TONG
Acta Physiologica Sinica 2020;72(2):133-138
Lycopene is an antioxidant which has potential anti-diabetic activity, but the cellular mechanisms have not been clarified. In this study, different concentrations of lycopene were used to treat pancreatic alpha and beta cell lines, and the changes of cell growth, cell apoptosis, cell cycle, reactive oxygen species (ROS), ATP levels and expression of related cytokines were determined. The results exhibited that lycopene did not affect cell growth, cell apoptosis, cell cycle, ROS and ATP levels of alpha cells, while it promoted the growth of beta cells, increased the ratio of S phase, reduced the ROS levels and increased the ATP levels of beta cells. At the same time, lycopene treatment elevated the mRNA expression levels of tnfα, tgfβ and hif1α in beta cells. These findings suggest that lycopene plays cell-specific role and activates pancreatic beta cells, supporting its application in diabetes therapy.
Adenosine Triphosphate
;
metabolism
;
Apoptosis
;
Carotenoids
;
pharmacology
;
Cell Cycle
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Glucagon-Secreting Cells
;
drug effects
;
Humans
;
Insulin-Secreting Cells
;
drug effects
;
Lycopene
;
pharmacology
;
Reactive Oxygen Species
;
metabolism
9.Changes in early intestinal flora and Type 1 diabetes.
Journal of Central South University(Medical Sciences) 2020;45(12):1469-1475
Type 1 diabetes (T1D) is an autoimmune disease characterized by T-cell mediated destruction of pancreatic B cells, absolute deficiency in insulin, and hyperglycemia. The incidence of T1D is increased sharply after the middle of the 20th century, suggesting that the environmental factors affect the occurrence and development of T1D. The diversity of human intestinal flora forms early in life and tends to stabilize around age 3. Early intestinal flora is in a dynamic process of change and is closely related to the maturation of the immune system, suggesting that early environmental exposure may be involved in the development of T1D. A variety of factors such as antibiotics and cesarean section can affect the colonization of early intestinal flora. To clarify the influence of these factors on early intestinal flora and its association with T1D, it is necessary to understand the pathogenesis of T1D and to provide an effective means for the primary prevention of T1D.
Cesarean Section
;
Child, Preschool
;
Diabetes Mellitus, Type 1
;
Female
;
Gastrointestinal Microbiome
;
Humans
;
Insulin
;
Insulin-Secreting Cells
;
Pregnancy
10.Clinical characteristics, residual beta-cell function and pancreatic auto-antibodies in Thai people with long-standing type 1 diabetes mellitus
Yotsapon Thewjitcharoen ; Sirinate Krittiyawong ; Somboon Vongterapak ; Soontaree Nakasatien ; Suphab Aroonparkmongkol ; Thep Himathongkam ; Ishant Khurana ; Assam El-Osta
Journal of the ASEAN Federation of Endocrine Societies 2020;35(2):158-162
Objectives. To describe the characteristics of long-standing T1DM in Thai patients and assess residual beta-cell function with status of pancreatic autoantibodies.
Methodology. This is a cross-sectional study of Thai subjects with T1DM and disease duration ≥ 25 years seen at the Theptarin Hospital. Random plasma C-peptide and pancreatic auto-antibodies (Anti-GAD, Anti-IA2, and Anti-ZnT8) were measured. Patients who developed complications were compared with those who remained free of complications.
Results. A total of 20 patients (males 65%, mean age 49.4±12.0 years, BMI 22.5±3.1 kg/m2, A1C 7.9±1.6%) with diabetes duration of 31.9±5.1 years were studied. Half of the participants remained free from any diabetic complications while the proportions reporting retinopathy, nephropathy, and neuropathy were 40%, 30%, and 15%, respectively. HDL cholesterol was significantly higher and triglyceride concentration significantly lower in patients who were free from diabetic nephropathy but not in those who were free from other complications. The prevalence rates of anti-GAD, anti- IA2, and anti-ZnT8 were 65%, 20%, and 10%, respectively. None of the patients who tested negative for both anti-GAD and anti-IA2 was positive for anti-ZnT8. Residual beta-cell function based on detectable random plasma C-peptide (≥ 0.1 ng/mL) and MMTT was found in only 3 patients (15%). There was no relationship between residual beta-cell function and protective effects of diabetic complications.
Conclusion. Endogenous insulin secretion persists in some patients with long-standing T1DM and half of longstanding T1DM in Thai patients showed no diabetic complications. HDL cholesterol was significantly higher and triglyceride concentration significantly lower in patients who were free from diabetic nephropathy
Diabetes Mellitus, Type 1
;
Autoantibodies
;
Thailand
;
Pancreas
;
Insulin-Secreting Cells
;
Disease Progression


Result Analysis
Print
Save
E-mail