1.Regulatory effects and mechanisms of branched chain amino acids and metabolic intermediates on insulin resistance.
Acta Physiologica Sinica 2023;75(2):291-302
Branched chain amino acids, as essential amino acids, can be used to synthesize nitrogen-containing compounds and also act as signal molecules to regulate substance metabolism. Studies have shown that the elevated level of branched chain amino acids is closely related to insulin resistance and type 2 diabetes. It can affect insulin signal transduction by activating mammalian target of rapamycin (mTOR) signal pathway, and regulate insulin resistance by damaging lipid metabolism and affecting mitochondrial function. In addition, abnormal catabolism of branched amino acids can lead to the accumulation of metabolic intermediates, such as branched chain α-keto acids, 3-hydroxyisobutyrate and β-aminoisobutyric acid. Branched chain α-keto acids and 3-hydroxyisobutyrate can induce insulin resistance by affecting insulin signaling pathway and damaging lipid metabolism. β-aminoisobutyric acid can improve insulin resistance by reducing lipid accumulation and inflammatory reaction and enhancing fatty acid oxidation. This paper systematically reviewed the regulatory effects and mechanisms of branched chain amino acids and their metabolic intermediates on insulin resistance, which will provide a new direction for the prevention and treatment of insulin resistance and type 2 diabetes.
Humans
;
Amino Acids, Branched-Chain/metabolism*
;
Insulin Resistance/physiology*
;
Diabetes Mellitus, Type 2
;
Insulin/pharmacology*
;
Keto Acids/metabolism*
2.Effect and mechanism of Zuogui Pills on neural function recovery in ischemic stroke mice based on OPN/IGF-1/mTOR.
Yan LIU ; Chun-Chen GAO ; Li LI ; Dan WU ; Yu-Jun CONG ; Qing-Hua FENG ; Ming-Hua WU ; Wen-Lei LI
China Journal of Chinese Materia Medica 2023;48(19):5250-5258
To explore the effect and mechanism of Zuogui Pills in promoting neural tissue recovery and functional recovery in mice with ischemic stroke. Male C57BL/6J mice were randomly divided into a sham group, a model group, and low-, medium, and high-dose Zuogui Pills groups(3.5, 7, and 14 g·kg~(-1)), with 15 mice in each group. The ischemic stroke model was established using photochemical embolization. Stiker remove and irregular ladder walking behavioral tests were conducted before modeling and on days 7, 14, 21, and 28 after medication. Triphenyl tetrazolium chloride(TTC) staining was performed on day 3 after modeling, and T2-weighted imaging(T2WI) and diffusion-weighted imaging(DWI) were performed on day 28 after medication to evaluate the extent of brain injury. Hematoxylin-eosin(HE) staining was performed to observe the histology of the cerebral cortex. Axonal marker proteins myelin basic protein(MBP), growth-associated protein 43(GAP43), mammalian target of rapamycin(mTOR), and its downstream phosphorylated s6 ribosomal protein(p-S6), as well as mechanism-related proteins osteopontin(OPN) and insulin-like growth factor 1(IGF-1), were detected using immunofluorescence and Western blot. Zuogui Pills had a certain restorative effect on the neural function impairment caused by ischemic stroke in mice. TTC staining showed white infarct foci in the sensory-motor cortex area, and T2WI imaging revealed cystic necrosis in the sensory-motor cortex area. The Zuogui Pills groups showed less brain tissue damage, fewer scars, and more capillaries. The number of neuronal axons in those groups was higher than that in the model group, and neuronal activity was stronger. The expression of GAP43, OPN, IGF-1, and mTOR proteins in the Zuogui Pills groups was higher than that in the model group. In summary, Zuogui Pills can promote the recovery of neural function and axonal growth in mice with ischemic stroke, and its mechanism may be related to the activation of the OPN/IGF-1/mTOR signaling pathway.
Mice
;
Animals
;
Male
;
Ischemic Stroke
;
Recovery of Function/physiology*
;
Insulin-Like Growth Factor I/pharmacology*
;
Mice, Inbred C57BL
;
TOR Serine-Threonine Kinases/metabolism*
;
Stroke/drug therapy*
;
Brain Ischemia/drug therapy*
;
Mammals/metabolism*
3.Effective fraction from Simiao Wan prevents hepatic insulin resistant by inhibition of lipolysis via AMPK activation.
Qi-Xin JIANG ; Yi-Meng CHEN ; Jing-Jie MA ; Yu-Ping WANG ; Ping LI ; Xiao-Dong WEN ; Jie YANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(3):161-176
Simiao Wan (SMW) is a traditional Chinese formula, including Atractylodis Rhizoma, Achyranthis Bidentatae Radix, Phellodendri Chinensis Cortex and Coicis Semen at the ratio of 1:1:2:2. It can be used to the treatment of diabetes. However, its bioactive compounds and underlying mechanism are unclear. This study aimed to screen the antilipolytic fraction from SMW and investigate its therapeutic mechanisms on hepatic insulin resistance. Different fractions of SMW were prepared by membrane separation combined with macroporous resin and their antilipolytic activities were screened in fasted mice. The effects of 60% ethanol elution (ESMW) on lipolysis were investigated in 3T3-L1 adipocytes stimulated by palmitic acid (PA) and high fat diet (HFD)-fed mice. In our study, ESMW is the bioactive fraction responsible for the antilipolytic activity of SMW and 13 compounds were characterized from ESMW by UHPLC-QTOF-MS/MS. ESMW suppressed protein kinase A (PKA)-hormone-sensitive lipase (HSL) related lipolysis and increased AMP-activated protein kinase (AMPK) phosphorylation in PA challenged 3T3-L1 adipocytes. AMPKα knockdown abolished the inhibitory effects of ESMW on IL-6 and HSL pSer-660, revealing that the antilipolytic and anti-inflammatory activities of ESMW are AMPK dependent. Furthermore, ESMW ameliorated insulin resistance and suppressed lipolysis in HFD-fed mice. It inhibited diacylglycerol accumulation in the liver and inhibited hepatic gluconeogenesis. Conditional medium collected from ESMW-treated 3T3-L1 cells ameliorated insulin action on hepatic gluconeogenesis in liver cells, demonstrating the antilipolytic activity contributed to ESMW beneficial effects on hepatic glucose production. In conclusion, ESMW, as the antilipolytic fraction of SMW, inhibited PKA-HSL related lipolysis by activating AMPK, thus inhibiting diacylglycerol (DAG) accumulation in the liver and thereby improving insulin resistance and hepatic gluconeogenesis.
AMP-Activated Protein Kinases/metabolism*
;
Animals
;
Insulin/metabolism*
;
Lipolysis/physiology*
;
Liver/metabolism*
;
Mice
;
Tandem Mass Spectrometry
4.Lipid metabolic intermediates regulate skeletal muscle insulin sensitivity.
Acta Physiologica Sinica 2022;74(5):805-815
Skeletal muscle is the largest organ of human body, which completes 80%-90% of glucose intake stimulated by insulin, and is closely related to the occurrence and development of insulin resistance (IR). Skeletal muscle is one of the main places of lipid metabolism, and lipid metabolites participate in skeletal muscle metabolism as signal molecules. Fatty acids regulate skeletal muscle insulin sensitivity through insulin signaling pathway, inflammatory response and mitochondrial function. Saturated fatty acids (SFAs) induce insulin resistance by impairing insulin signal transduction, inducing mitochondrial dysfunction and inflammatory response, while unsaturated fatty acids reverse the adverse effects of SFAs and ameliorate IR by enhancing insulin signal transduction and anti-inflammatory effect. In addition, disorders of lipid metabolism in skeletal muscle cause accumulation of harmful metabolic intermediates, such as diacylglycerol, ceramide and long-chain acyl-coenzyme A, and induce IR by directly or indirectly damaging insulin signaling pathway. This article reviews the research progress of lipid metabolic intermediates regulating insulin sensitivity in skeletal muscle, which will help to better understand the pathogenesis of diabetes.
Humans
;
Insulin Resistance/physiology*
;
Muscle, Skeletal/metabolism*
;
Insulin/metabolism*
;
Lipid Metabolism
;
Fatty Acids/metabolism*
5.Exosomes and their roles in diabetes mellitus and its complications: from pathogenic, diagnostic and therapeutical perspectives.
Yin SHOU ; Yu-Hang MA ; Li HU ; Ping XU ; Wei-Bo ZHANG ; Yuan GAO ; Bi-Meng ZHANG
Acta Physiologica Sinica 2019;71(6):917-934
Exosome is a kind of nanoscale-size extracellular vesicles secreted by the means of cell active stimulation with outer membrane structure of vacuoles corpuscle. It can carry and transfer a lot of biological molecules, such as DNA fragments, circular RNA (circRNA), messenger RNA (mRNA), microRNA (miRNA), functional proteins, transcription factors, etc., so as to achieve the goal of information transmission between cells. The relationship between exosomes and diabetes has received extensive attention in recent years. The exosomes play an important role in insulin sensitivity, glucose homeostasis and vascular endothelial function. This paper reviews the role of exosomes in the occurrence and development of diabetes and its complications, and discusses the role and prospect of exosomes as a target for diabetes treatment and its role in the diagnosis and treatment of diabetes.
Diabetes Mellitus
;
diagnosis
;
physiopathology
;
therapy
;
Exosomes
;
metabolism
;
Humans
;
Insulin Resistance
;
physiology
;
MicroRNAs
;
metabolism
;
RNA, Messenger
;
metabolism
6.Decreased β-Cell Function is Associated with Cardiovascular Autonomic Neuropathy in Chinese Patients Newly Diagnosed with Type 2 Diabetes.
Xubin YANG ; Wen XU ; Yanhua ZHU ; Hongrong DENG ; Ying TAN ; Longyi ZENG ; Jianping WENG
Neuroscience Bulletin 2019;35(1):25-33
The influence of β-cell function on cardiovascular autonomic neuropathy (CAN), an important diabetes-related complication, is still unclear. In this study, we aimed to investigate the association between residual β-cell function and CAN in patients newly diagnosed with type 2 diabetes. We enrolled 90 newly-diagnosed type 2 diabetic patients and 37 participants with normal glucose tolerance as controls. The patients were divided into a CAN+ group (diabetic patients with CAN, n = 20) and a CAN- group (diabetic patients without CAN, n = 70) according to the standard Ewing battery of tests. Fasting and postprandial plasma glucose, insulin, and C-peptide were measured. Homeostasis model assessment-beta cells (HOMA-B) and HOMA-insulin resistance (IR) were calculated. The prevalence of CAN in this population was 22.2%. Compared with the CAN- group, the CAN+ group had significantly lower fasting plasma insulin (6.60 ± 4.39 vs 10.45 ± 7.82 μ/L, P = 0.029), fasting C-peptide (0.51 ± 0.20 vs 0.82 ± 0.51 nmol/L, P = 0.004), and HOMA-B (21.44 ± 17.06 vs 44.17 ± 38.49, P = 0.002). Fasting C-peptide was correlated with the Valsalva ratio (r = 0.24, P = 0.043) and the 30:15 test (r = 0.26, P = 0.023). Further analysis showed that fasting C-peptide (OR: 0.041, 95% CI 0.003-0.501, P = 0.012) and HOMA-B (OR: 0.965, 95% CI 0.934-0.996, P = 0.028) were independently associated with cardiovascular autonomic nerve function in this population. The patients with fasting C-peptide values < 0.67 nmol/L were more likely to have CAN than those with C-peptide levels ≥0.67 nmol/L (OR: 6.00, 95% CI 1.815-19.830, P = 0.003). A high prevalence of CAN was found in patients with newly-diagnosed type 2 diabetes. Decreased β-cell function was closely associated with CAN in this population.
Adult
;
Asian Continental Ancestry Group
;
Blood Glucose
;
analysis
;
Diabetes Mellitus, Type 2
;
complications
;
metabolism
;
Diabetic Neuropathies
;
etiology
;
Fasting
;
physiology
;
Female
;
Glucose
;
metabolism
;
Humans
;
Insulin
;
metabolism
;
Insulin Resistance
;
physiology
;
Insulin-Secreting Cells
;
metabolism
;
Male
;
Middle Aged
7.Combined Influence of Insulin Resistance and Inflammatory Biomarkers on Type 2 Diabetes: A Population-based Prospective Cohort Study of Inner Mongolians in China.
Qiao Yan QIU ; Bei Lei ZHANG ; Ming Zhi ZHANG ; Jia Hui WU ; Jing Wen ZHOU ; Zhu LIANG ; Yong Hong ZHANG ; Shao Yan ZHANG
Biomedical and Environmental Sciences 2018;31(4):300-305
This prospective study was designed to examine the combined influence of insulin resistance (IR) and inflammatory biomarker levels on type 2 diabetes mellitus (T2DM) among 1,903 Inner Mongolians. During follow-up, 205 (10.77%) participants developed T2DM, and the incidence of T2DM was higher among subjects with IR, elevated C-reactive protein (CRP), elevated sICAM-1, elevated sE-selectin, or the coexistences of IR with elevated CRP, elevated sICAM-1, elevated sE-selectin, and elevated angiotensin II (all P < 0.05) compared with patients without IR or any elevated biomarkers. In multivariate analysis, the odd ratios [OR, (95% confidence intervals)] for these conditions were 1.944 (1.405-2.691), 2.003 (1.449-2.767), 1.706 (1.232-2.362), 1.560 (1.123-2.165), 2.708 (1.809-4.054), 1.885 (1.155-3.078), 2.101 (1.340-3.295), and 2.260 (1.426-3.582), respectively. Our findings demonstrated that IR and elevated inflammatory biomarkers were associated with T2DM, and that the coexistence of IR and elevated inflammatory biomarkers increased the risk of T2DM.
Asian Continental Ancestry Group
;
Biomarkers
;
China
;
epidemiology
;
Cohort Studies
;
Diabetes Mellitus, Type 2
;
blood
;
epidemiology
;
genetics
;
Humans
;
Inflammation
;
metabolism
;
Insulin Resistance
;
genetics
;
physiology
;
Multivariate Analysis
;
Odds Ratio
;
Prospective Studies
8.The effect of noise exposure on insulin sensitivity in mice may be mediated by the JNK/IRS1 pathway.
Lijie LIU ; Cong FANG ; Jing YANG ; Hongyu ZHANG ; Yi HUANG ; Chuanying XUAN ; Yongfang WANG ; Shengwei LI ; Jun SHA ; Mingming ZHA ; Min GUO
Environmental Health and Preventive Medicine 2018;23(1):6-6
BACKGROUND:
Epidemiological studies have suggested that noise exposure may increase the risk of type 2 diabetes mellitus (T2DM), and experimental studies have demonstrated that noise exposure can induce insulin resistance in rodents. The aim of the present study was to explore noise-induced processes underlying impaired insulin sensitivity in mice.
METHODS:
Male ICR mice were randomly divided into four groups: a control group without noise exposure and three noise groups exposed to white noise at a 95-dB sound pressure level for 4 h/day for 1, 10, or 20 days (N1D, N10D, and N20D, respectively). Systemic insulin sensitivity was evaluated at 1 day, 1 week, and 1 month post-noise exposure (1DPN, 1WPN, and 1MPN) via insulin tolerance tests (ITTs). Several insulin-related processes, including the phosphorylation of Akt, IRS1, and JNK in the animals' skeletal muscles, were examined using standard immunoblots. Biomarkers of inflammation (circulating levels of TNF-α and IL-6) and oxidative stress (SOD and CAT activities and MDA levels in skeletal muscles) were measured via chemical analyses.
RESULTS:
The data obtained in this study showed the following: (1) The impairment of systemic insulin sensitivity was transient in the N1D group but prolonged in the N10D and N20D groups. (2) Noise exposure led to enhanced JNK phosphorylation and IRS1 serine phosphorylation as well as reduced Akt phosphorylation in skeletal muscles in response to exogenous insulin stimulation. (3) Plasma levels of TNF-α and IL-6, CAT activity, and MDA concentrations in skeletal muscles were elevated after 20 days of noise exposure.
CONCLUSIONS
Impaired insulin sensitivity in noise-exposed mice might be mediated by an enhancement of the JNK/IRS1 pathway. Inflammation and oxidative stress might contribute to insulin resistance after chronic noise exposure.
Animals
;
Biomarkers
;
metabolism
;
Inflammation
;
physiopathology
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Insulin Resistance
;
genetics
;
immunology
;
MAP Kinase Signaling System
;
physiology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Mitogen-Activated Protein Kinase 8
;
genetics
;
metabolism
;
Noise
;
adverse effects
;
Oxidative Stress
;
physiology
;
Proto-Oncogene Proteins c-akt
;
genetics
;
metabolism
;
Random Allocation
;
Time Factors
9.Mori Cortex extract ameliorates nonalcoholic fatty liver disease (NAFLD) and insulin resistance in high-fat-diet/streptozotocin-induced type 2 diabetes in rats.
Li-Li MA ; Yan-Yan YUAN ; Ming ZHAO ; Xin-Rong ZHOU ; Tashina JEHANGIR ; Fu-Yan WANG ; Yang XI ; Shi-Zhong BU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):411-417
Nonalcoholic fatty liver disease (NAFLD) and type 2 Diabetes Mellitus (T2DM) are highly prevalent diseases and are closely associated, with NAFLD being present in the majority of T2DM patients. In Asian traditional medicine, Mori Cortex is widely used for the treatment of diabetes and hyperlipidemia. However, whether it has a therapeutic effect on T2DM associated with NAFLD is still unknown. The present study showed that the oral treatment with Mori Cortex extract (MCE; 10 g·kg·d) lowered the blood lipid levels and reversed insulin resistance (IR) in high fat-diet/streptozotocin-induced type 2 diabetes in rats. The expression levels of sterol receptor element-binding protein-1c (SREBP-1c) and carbohydrate-responsive element binding protein (ChREBP), which are involved in steatosis in NAFLD rats, were measured in the liver samples. MCE decreased the protein and mRNA expression levels of SREBP-1c and ChREBP. In conclusion, down-regulation of SREBP-1c and ChREBP might contribute to the protective effect of MCE on hepatic injury and IR in the rats with T2DM associated with NAFLD.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
;
genetics
;
Diabetes Mellitus, Type 2
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Disease Models, Animal
;
Down-Regulation
;
drug effects
;
Insulin
;
blood
;
Insulin Resistance
;
physiology
;
Lipid Metabolism
;
drug effects
;
genetics
;
Liver
;
drug effects
;
physiopathology
;
Male
;
Morus
;
Non-alcoholic Fatty Liver Disease
;
blood
;
chemically induced
;
drug therapy
;
metabolism
;
Phytotherapy
;
Plant Extracts
;
pharmacology
;
therapeutic use
;
Rats
;
Rats, Sprague-Dawley
;
Streptozocin
10.Protective Effects of cis-2-Dodecenoic Acid in an Experimental Mouse Model of Vaginal Candidiasis.
Dong Liang YANG ; Yu Qian ZHANG ; Yan Ling HU ; Li Xing WENG ; Gui Sheng ZENG ; Lian Hui WANG
Biomedical and Environmental Sciences 2018;31(11):816-828
OBJECTIVE:
To evaluate the efficacy of cis-2-dodecenoic acid (BDSF) in the treatment and prevention of vaginal candidiasis in vivo.
METHODS:
The activities of different concentrations of BDSF against the virulence factors of Candida albicans (C. albicans) were determined in vitro. An experimental mouse model of Candida vaginitis was treated with 250 μmol/L BDSF. Treatment efficiency was evaluated in accordance with vaginal fungal burden and inflammation symptoms.
RESULTS:
In vitro experiments indicated that BDSF attenuated the adhesion and damage of C. albicans to epithelial cells by decreasing phospholipase secretion and blocking filament formation. Treatment with 30 μmol/L BDSF reduced the adhesion and damage of C. albicans to epithelial cells by 36.9% and 42.3%, respectively. Treatment with 200 μmol/L BDSF completely inhibited phospholipase activity. In vivo mouse experiments demonstrated that BDSF could effectively eliminate vaginal infection and relieve inflammatory symptoms. Four days of treatment with 250 μmol/L BDSF reduced vaginal fungal loads by 6-fold and depressed inflammation. Moreover, BDSF treatment decreased the expression levels of the inflammatory chemokine-associated genes MCP-1 and IGFBP3 by 2.5- and 2-fold, respectively.
CONCLUSION
BDSF is a novel alternative drug that can efficiently control vaginal candidiasis by inhibiting the virulence factors of C. albicans.
Animals
;
Candida albicans
;
drug effects
;
metabolism
;
pathogenicity
;
physiology
;
Candidiasis, Vulvovaginal
;
drug therapy
;
genetics
;
immunology
;
microbiology
;
Chemokine CCL2
;
genetics
;
immunology
;
Disease Models, Animal
;
Fatty Acids, Monounsaturated
;
administration & dosage
;
Female
;
Fungal Proteins
;
genetics
;
metabolism
;
Humans
;
Insulin-Like Growth Factor Binding Protein 3
;
genetics
;
immunology
;
Mice
;
Virulence
;
drug effects
;
Virulence Factors
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail