1.The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.
Ji Sung YOON ; Jun Sung MOON ; Yong Woon KIM ; Kyu Chang WON ; Hyoung Woo LEE
Journal of Korean Medical Science 2016;31(4):547-552
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
Animals
;
Anticholesteremic Agents/*pharmacology
;
Antigens, CD36/antagonists & inhibitors/genetics/*metabolism
;
Cells, Cultured
;
Ezetimibe/*pharmacology
;
Flow Cytometry
;
Glucose/toxicity
;
Insulin/genetics/metabolism/secretion
;
Insulin-Secreting Cells/cytology/*drug effects/metabolism
;
Male
;
Palmitic Acid/metabolism
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Real-Time Polymerase Chain Reaction
2.Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes.
Lu ZHANG ; Ming ZHANG ; Jin Jin WANG ; Chong Jian WANG ; Yong Cheng REN ; Bing Yuan WANG ; ; Hong Yan ZHANG ; Xiang Yu YANG ; Yang ZHAO ; Cheng Yi HAN ; Jun Mei ZHOU ; Chao PANG ; Lei YIN ; Jing Zhi ZHAO ; Xin Ping LUO ; Dong Sheng HU ;
Biomedical and Environmental Sciences 2016;29(11):814-817
This cohort study was designed to evaluate the association of transcription factor 7-like 2 (TCF7L2) and proglucagon gene (GCG) variants with disordered glucose metabolism and the incidence of type 2 diabetes mellitus (T2DM) in a rural adult Chinese population. A total of 7,751 non-T2DM participants ⋝18 years old genotyped at baseline were recruited. The same questionnaire interview and physical and blood biochemical examinations were performed at both baseline and follow-up. During a median 6 years of follow-up, T2DM developed in 227 participants. After adjustment for potential contributory factors, nominally significant associations were seen between TT genotype and the recessive model of TCF7L2 rs7903146 and increased risk of T2DM [hazard ratio (HR)=4.068, 95% confidence interval (CI): 1.270-13.026; HR=4.051, 95% CI: 1.268-12.946, respectively]. The TT genotype of rs7903146 was also significantly associated with higher fasting plasma insulin level and the homeostasis model assessment of insulin resistance in case of new-onset diabetes. In addition, the TCF7L2 rs290487 TT genotype was associated with abdominal obesity and the GCG rs12104705 CC genotype was associated with both general obesity and abdominal obesity in case of new-onset diabetes.
Adult
;
Cohort Studies
;
Diabetes Mellitus, Type 2
;
complications
;
genetics
;
Female
;
Humans
;
Insulin
;
secretion
;
Insulin Resistance
;
genetics
;
Male
;
Middle Aged
;
Obesity
;
complications
;
genetics
;
Polymorphism, Single Nucleotide
;
Proglucagon
;
genetics
;
Transcription Factor 7-Like 2 Protein
;
genetics
3.Effect of ginsenoside Rb1 on insulin signal transduction pathway in hippocampal neurons of high-glucose-fed rats.
Wen-Juan GU ; Di LIU ; Meng-Ren ZHANG ; Hong ZHANG
China Journal of Chinese Materia Medica 2014;39(6):1064-1068
OBJECTIVETo study the effect of ginsenoside Rb1 on GSKbeta/IDE signal transduction pathway and Abeta protein secretion in hippocampal neurons of high glucose-treated rats.
METHODHippocampal neurons of 24 h-old newly born SD rats were primarily cultured, inoculated in culture medium under different conditions, and then divided into the normal group, the high glucose group, the LiCl group and the Rb1 group. After being cultured for 72 h, the expressions of their phosphorylated GSK3beta, total GSK3beta and IDE protein were detected by Western blotting analysis. The mRNA expressions of GSK3beta and IDE were determined by RT-PCR. The ELISA assay was used to detect the secretion of Abeta protein in cell supernatant.
RESULTCompared with the normal group, the high glucose group showed increase in the p/tGSK3beta protein ratio and the secretion of Abeta protein and decrease in IDE protein and mRNA (P < 0.05). Compared with the high glucose group, both Rb1 and LiCl groups showed decrease in the p/tGSK3beta protein ratio and the expression of Abeta protein and increase in IDE protein and mRNA expression (P < 0.05). Compared with the LiCl group, the Rb1 group showed no significant difference in the expressions of p/tGSK3beta protein, IDE protein, mRNA and Abeta protein expression. In addition, the GSK3beta mRNA expression of the four groups had no significant difference.
CONCLUSIONGinsenoside Rb1 may reduce the secretion of Abeta protein in hippocampal neurons by reducing the phosphorylation of GSK3beta, down-regulating the ratio of pGSK3beta/GSK3beta and upregulating the expression of IDE.
Amyloid beta-Peptides ; genetics ; metabolism ; secretion ; Animals ; Dietary Carbohydrates ; adverse effects ; Gene Expression Regulation ; drug effects ; Ginsenosides ; pharmacology ; Glucose ; adverse effects ; Glycogen Synthase Kinase 3 ; genetics ; metabolism ; Glycogen Synthase Kinase 3 beta ; Hippocampus ; cytology ; Insulin ; metabolism ; Insulysin ; genetics ; metabolism ; Neurons ; cytology ; drug effects ; metabolism ; secretion ; Rats ; Rats, Sprague-Dawley ; Signal Transduction ; drug effects
4.Protective effects of da chai hu granules (DCHKL) against alloxan (AXN)-induced rat pancreatic islets damage.
Wei LI ; Liang-liang CAI ; Hui-qin XU ; Zhi-fen ZHANG ; Zhao-long WANG ; Yu-han TAO
Acta Pharmaceutica Sinica 2013;48(9):1403-1408
The protective effects of Da Chai Hu Granules (DCHKL) on islet cells which were incubated with 4 mmol x L(-1) alloxan (AXN) were studied. The viability of islet cells were measured with MTT. Insulin released into medium and in islets was detected by radioimmunoassay. Cell apoptosis rate was determined by flow cytometry. The expression of anti-apoptotic gene Bcl-2 and pro-apoptotic gene Bax in islet cells were measured with RT-PCR (reverse transcription polymerase chain reaction). Serum containing DCHKL can promote the activity of islet cells significantly (P < 0.01). Basal insulin secretion and high glucose-stimulated insulin secretion increased significantly (P < 0.01). Serum containing DCHKL can inhibit apoptosis of islet cells, the ratio of apoptosis was decreased. Serum containing DCHKL increased expression of Bcl-2 mRNA and decreased expression of Bax mRNA. DCHKL can significantly promote proliferation of islet cells and increase the amount of basal secretion of pancreatic islet cells and high glucose-stimulated insulin secretion. The expression of Bcl-2 increased significantly. The expression of Bax decreased significantly. DCHKL have a protective effect on the islet cells.
Alloxan
;
toxicity
;
Animals
;
Apoptosis
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Drug Combinations
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Insulin
;
metabolism
;
secretion
;
Islets of Langerhans
;
cytology
;
drug effects
;
metabolism
;
Plants, Medicinal
;
chemistry
;
Protective Agents
;
pharmacology
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
5.B-cell translocation gene 2 positively regulates GLP-1-stimulated insulin secretion via induction of PDX-1 in pancreatic beta-cells.
Seung Lark HWANG ; Okyun KWON ; Sun Gyun KIM ; In Kyu LEE ; Yong Deuk KIM
Experimental & Molecular Medicine 2013;45(5):e25-
Glucagon-like peptide-1 (GLP-1) is a potent glucoincretin hormone and an important agent for the treatment of type 2 diabetes. Here we demonstrate that B-cell translocation gene 2 (BTG2) is a crucial regulator in GLP-1-induced insulin gene expression and insulin secretion via upregulation of pancreatic duodenal homeobox-1 (PDX-1) in pancreatic beta-cells. GLP-1 treatment significantly increased BTG2, PDX-1 and insulin gene expression in pancreatic beta-cells. Notably, adenovirus-mediated overexpression of BTG2 significantly elevated insulin secretion, as well as insulin and PDX-1 gene expression. Physical interaction studies showed that BTG2 is associated with increased PDX-1 occupancy on the insulin gene promoter via a direct interaction with PDX-1. Exendin-4 (Ex-4), a GLP-1 agonist, and GLP-1 in pancreatic beta-cells increased insulin secretion through the BTG2-PDX-1-insulin pathway, which was blocked by endogenous BTG2 knockdown using a BTG2 small interfering RNA knockdown system. Finally, we revealed that Ex-4 and GLP-1 significantly elevated insulin secretion via upregulation of the BTG2-PDX-1 axis in pancreatic islets, and this phenomenon was abolished by endogenous BTG2 knockdown. Collectively, our current study provides a novel molecular mechanism by which GLP-1 positively regulates insulin gene expression via BTG2, suggesting that BTG2 has a key function in insulin secretion in pancreatic beta-cells.
Animals
;
Gene Expression Regulation/drug effects
;
Glucagon-Like Peptide 1/*pharmacology
;
Homeodomain Proteins/*genetics/metabolism
;
Humans
;
Immediate-Early Proteins/genetics/*metabolism
;
Insulin/genetics/*secretion
;
Insulin-Secreting Cells/drug effects/*metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Peptides/pharmacology
;
Promoter Regions, Genetic/genetics
;
Protein Binding/drug effects/genetics
;
Rats
;
Trans-Activators/*genetics/metabolism
;
Tumor Suppressor Proteins/genetics/*metabolism
;
Venoms/pharmacology
6.Kaiyuqingre formula improves insulin secretion via regulating uncoupling protein-2 and KATP channel.
Xiao-lin TONG ; Jun SONG ; Lin-hua ZHAO ; Hang-yu JI
Chinese Medical Journal 2011;124(17):2746-2750
BACKGROUNDType 2 diabetes mellitus (T2DM) results from the complex association of insulin resistance and pancreatic β-cell failure. Recent studies have shown that patients diagnosed with T2DM present with a significant decrease in β-cell function, which can be further compromised during the progression of the disease. Several mechanisms have been shown to play a role in this process such as glucotoxicity and lipotoxicity, which contribute to accelerating insulin secretion. In this regard, Chinese medicine has a certain advantage. This experiment was performed to observe the effect of a Chinese medicine named Kaiyuqingre formula (KYQRF) on β-cell function and its mechanisms of action therein.
METHODSHigh glucose was used to set up a model of β-cell function failure. At the same time, medicated serum of KYQRF with different doses were administered to the cells. Rosiglitazone was taken as a control to observe the changes in insulin secretion, ATP-sensitive K(+) channels (K(ATP) channel) and uncoupling protein-2 (UCP-2) in each group.
RESULTSKYQRF had some effects on the insulin secretion. In a low glucose environment, no effective change in insulin secretion was observed (P > 0.05). However, insulin levels increased significantly when INS-1 cells were exposed to a high glucose environment (P < 0.05). KYQRF could also enhance cell viability (P < 0.05) in an effect similar to rosiglitazone. Although KYQRF had no effect on inwardly rectifying potassium channels (Kir6.2) (P > 0.05), it could decrease the overexpression of both UCP-2 and sulfonylurea receptor 1 (P < 0.05).
CONCLUSIONKYQRF can protect islet function by decreasing UCP-2 and sulfonylurea receptor 1.
ATP-Binding Cassette Transporters ; genetics ; Animals ; Cell Survival ; drug effects ; Drugs, Chinese Herbal ; pharmacology ; Glucose ; pharmacology ; Insulin ; secretion ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; Ion Channels ; genetics ; Male ; Mitochondrial Proteins ; genetics ; Potassium Channels, Inwardly Rectifying ; genetics ; Rats ; Rats, Sprague-Dawley ; Receptors, Drug ; genetics ; Sulfonylurea Receptors ; Thiazolidinediones ; pharmacology ; Uncoupling Protein 2
7.Observation of insulin exocytosis by a pancreatic β cell line with total internal reflection fluorescence microscopy.
Zhao-ying FU ; Ya-ping WANG ; Yu CHEN
Chinese Medical Sciences Journal 2011;26(1):60-63
Animals
;
Exocytosis
;
drug effects
;
physiology
;
Glucose
;
pharmacology
;
Insulin
;
secretion
;
Insulin-Secreting Cells
;
cytology
;
drug effects
;
metabolism
;
Mice
;
Microscopy, Fluorescence
;
methods
;
Potassium
;
pharmacology
;
Recombinant Fusion Proteins
;
genetics
;
metabolism
;
Vesicle-Associated Membrane Protein 2
;
genetics
;
metabolism
8.RNA interference targeting mu-opioid receptors reverses the inhibition of fentanyl on glucose-evoked insulin release of rat islets.
Tao-Lai QIAN ; Lei ZHANG ; Xin-Hua WANG ; Sheng LIU ; Liang MA ; Ying LU
Chinese Medical Journal 2010;123(24):3652-3657
BACKGROUNDMu opioid receptor plays an important role in many physiological functions. Fentanyl is a widely used opioid receptor agonist for analgesia. This study was conducted to test the role of mu-opioid receptor on insulin release by determining whether fentanyl affected insulin release from freshly isolated rat pancreatic islets and if small interfering RNAs (siRNA) targeting mu-opioid receptor in the islets could knock down mu-opioid receptor expression.
METHODSIslets were isolated from ripe SD rats' pancreas by common bile duct intraductal collagenase V digestion and purified by discontinuous Ficoll density gradient centrifugation. The siRNA knock-down of mu-opioid receptor mRNA and protein in islet cells was analyzed by semi-quantitative real time-PCR and Western blotting. After siRNA-transfection for 48 hours, the islets were co-cultured with fentanyl as follows: 0 ng/ml, 3 ng/ml and 30 ng/ml for 48 hours. Then glucose-evoked insulin release was performed. As a control, the insulin release was also analyzed in islets without siRNA-trasfection after being co-cultured with fentanyl for 48 hours.
RESULTSAfter 48 hours of transfections, specific siRNA targeting of mu-opioid receptors produced significant reduction of mu-opioid receptor mRNA and protein (P < 0.01). Fentanyl significantly inhibited glucose-evoked insulin release in islets in a concentration dependent manner (P < 0.01). But after siRNA-transfection for 48 hours, the inhibition on glucose-evoked insulin release was reversed (P < 0.01).
CONCLUSIONSRNA interference specifically reduces mu-opioid receptor mRNA and protein expression, leading to reversal of the fentanyl-induced inhibition on glucose-evoked insulin release of rat islets. The activation of opioid receptor induced by fentanyl functions to inhibit insulin release. The use of RNAi presents a promising tool for future research in diabetic mechanisms and a novel therapy for diabetes.
Analgesics, Opioid ; pharmacology ; Animals ; Cell Survival ; drug effects ; Cells, Cultured ; Fentanyl ; pharmacology ; Glucose ; pharmacology ; Insulin ; secretion ; Islets of Langerhans ; drug effects ; secretion ; Male ; RNA Interference ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Receptors, Opioid, mu ; antagonists & inhibitors ; genetics ; physiology
9.Recombinant proteins secreted from tissue-engineered bioartificial muscle improve cardiac dysfunction and suppress cardiomyocyte apoptosis in rats with heart failure.
Shu-Ling RONG ; Yong-Jin WANG ; Xiao-Lin WANG ; Yong-Xin LU ; Yin WU ; Qi-Yun LIU ; Shao-Hua MI ; Yu-Lan XU
Chinese Medical Journal 2010;123(24):3626-2633
BACKGROUNDTissue-engineered bioartificial muscle-based gene therapy represents a promising approach for the treatment of heart diseases. Experimental and clinical studies suggest that systemic administration of insulin-like growth factor-1 (IGF-1) protein or overexpression of IGF-1 in the heart exerts a favorable effect on cardiovascular function. This study aimed to investigate a chronic stage after myocardial infarction (MI) and the potential therapeutic effects of delivering a human IGF-1 gene by tissue-engineered bioartificial muscles (BAMs) following coronary artery ligation in Sprague-Dawley rats.
METHODSLigation of the left coronary artery or sham operation was performed. Primary skeletal myoblasts were retrovirally transduced to synthesize and secrete recombinant human insulin-like growth factor-1 (rhIGF-1), and green fluorescent protein (GFP), and tissue-engineered into implantable BAMs. The rats that underwent ligation were randomly assigned to 2 groups: MI-IGF group (n = 6) and MI-GFP group (n = 6). The MI-IGF group received rhIGF-secreting BAM (IGF-BAMs) transplantation, and the MI-GFP group received GFP-secreting BAM (GFP-BAMs) transplantation. Another group of rats served as the sham operation group, which was also randomly assigned to 2 subgroups: S-IGF group (n = 6) and S-GFP group (n = 6). The S-IGF group underwent IGF-1-BAM transplantation, and S-GFP group underwent GFP-BAM transplantation. IGF-1-BAMs and GFP-BAMs were implanted subcutaneously into syngeneic rats after two weeks of operation was performed. Four weeks after the treatment, hemodynamics was performed. IGF-1 was measured by radioimmunoassay, and then the rats were sacrificed and ventricular samples were subjected to immunohistochemistry. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to examine the mRNA expression of bax and Bcl-2. TNF-α and caspase 3 expression in myocardium was examined by Western blotting.
RESULTSPrimary rat myoblasts were retrovirally transduced to secrete rhIGF-1 and tissue-engineered into implantable BAMs containing parallel arrays of postmitotic myofibers. In vitro, they secreted consistent levels of hIGF (0.4 - 1.2 µg×BAM(-1)×d(-1)). When implanted into syngeneic rat, IGF-BAMs secreted and delivered rhIGF. Four weeks after therapy, the hemodynamics was improved significantly in MI rats treated with IGF-BAMs compared with those treated with GFP-BAMs. The levels of serum IGF-1 were increased significantly in both MI and sham rats treated with IGF-BAM. The mRNA expression of bax was lower and Bcl-2 expression was higher in MI-IGF group than MI-GFP group (P < 0.05). Western blotting assay showed TNF-α and caspase 3 expression was lower in MI-IGF group than MI-GFP group after therapy.
CONCLUSIONSrhIGF-1 significantly improves left ventricular function and suppresses cardiomyocyte apoptosis in rats with chronic heart failure. Genetically modified tissue-engineered BAMs provide a method delivering recombinant protein for the treatment of heart failure.
Animals ; Apoptosis ; Caspase 3 ; analysis ; Desmin ; analysis ; Genetic Therapy ; Heart Failure ; pathology ; physiopathology ; therapy ; Insulin-Like Growth Factor I ; genetics ; secretion ; Myoblasts, Skeletal ; metabolism ; Myocytes, Cardiac ; pathology ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins ; secretion ; Retroviridae ; genetics ; Tissue Engineering ; Tumor Necrosis Factor-alpha ; analysis ; Ventricular Function, Left
10.Advances of the mechanism study on berberine in the control of blood glucose and lipid as well as metabolism disorders.
Ning SHEN ; Cai-Na LI ; Yi HUAN ; Zhu-Fang SHEN
Acta Pharmaceutica Sinica 2010;45(6):699-704
Berberine, an isoquinoline alkaloid isolated from some Chinese medicinal herbs such as Coptidis rhizoma, has been used for the treatment of diarrhea and other gastrointestinal infections as an antibacterial drug in Chinese medicine. In recent years, it was reported to have beneficial effects on the metabolism disorders states of diabetes. The mechanisms involve many aspects of the diabetes, including regulating the blood cholesterol and triglyceride, lowering blood glucose, ameliorating the insulin resistant state and influencing the function of the pancreatic beta cell.
Animals
;
Berberine
;
isolation & purification
;
pharmacology
;
Blood Glucose
;
metabolism
;
Coptis
;
chemistry
;
Diabetes Mellitus
;
metabolism
;
Drugs, Chinese Herbal
;
isolation & purification
;
pharmacology
;
Humans
;
Insulin
;
metabolism
;
secretion
;
Insulin-Secreting Cells
;
drug effects
;
Metabolic Diseases
;
metabolism
;
Nicotinamide Phosphoribosyltransferase
;
biosynthesis
;
genetics
;
Plants, Medicinal
;
chemistry
;
Protein Kinases
;
metabolism
;
RNA, Messenger
;
metabolism
;
Receptors, LDL
;
genetics
;
metabolism
;
Signal Transduction

Result Analysis
Print
Save
E-mail