1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
6.Outpatient Renal Function Screening Before Contrast-Enhanced CT Examinations
Yunseo LEE ; Inpyeong HWANG ; Yeon Jin CHO ; Seung Seok HAN ; Soon Ho YOON
Journal of Korean Medical Science 2024;39(38):e298-
Intravascular administration of iodinated contrast media can cause contrast-induced acute kidney injury, especially in patients with an estimated glomerular filtration rate (eGFR) less than 30 mL/min/1.73 m 2 . The American College of Radiology (ACR) and the European Society of Urogenital Radiology (ESUR) guidelines recommend renal function screening based on medical history, but their effectiveness has been under-evaluated. This retrospective study included 2,560 consecutive adult outpatients without eGFR measurements within 180 days before contrast-enhanced computed tomography (CT) at a single tertiary hospital from July through September 2023. On the day of CT, they underwent eGFR tests and 1.1% had an eGFR < 30 mL/min/1.73 m 2 , preferentially with histories of gout and renal disease. According to the ACR and ESUR strategies, 16.9% and 38.8% of all study participants were positive, respectively, identifying 92.6% and 96.3% of patients with renal insufficiency. Both strategies demonstrated high negative predictive values. These results support selective renal function screening before contrast-enhanced examinations.
7.Validation of Ultrasound and Computed Tomography-Based Risk Stratification System and Biopsy Criteria for Cervical Lymph Nodes in Preoperative Patients With Thyroid Cancer
Young Hun JEON ; Ji Ye LEE ; Roh-Eul YOO ; Jung Hyo RHIM ; Kyung Hoon LEE ; Kyu Sung CHOI ; Inpyeong HWANG ; Koung Mi KANG ; Ji-hoon KIM
Korean Journal of Radiology 2023;24(9):912-923
Objective:
This study aimed to validate the risk stratification system (RSS) and biopsy criteria for cervical lymph nodes (LNs) proposed by the Korean Society of Thyroid Radiology (KSThR).
Materials and Methods:
This retrospective study included a consecutive series of preoperative patients with thyroid cancer who underwent LN biopsy, ultrasound (US), and computed tomography (CT) between December 2006 and June 2015. LNs were categorized as probably benign, indeterminate, or suspicious according to the current US- and CT-based RSS and the size thresholds for cervical LN biopsy as suggested by the KSThR. The diagnostic performance and unnecessary biopsy rates were calculated.
Results:
A total of 277 LNs (53.1% metastatic) in 228 patients (mean age ± standard deviation, 47.4 years ± 14) were analyzed. In US, the malignancy risks were significantly different among the three categories (all P < 0.001); however, CTdetected probably benign and indeterminate LNs showed similarly low malignancy risks (P = 0.468). The combined US + CT criteria stratified the malignancy risks among the three categories (all P < 0.001) and reduced the proportion of indeterminate LNs (from 20.6% to 14.4%) and the malignancy risk in the indeterminate LNs (from 31.6% to 12.5%) compared with US alone. In all image-based classifications, nodal size did not affect the malignancy risks (short diameter [SD] ≤ 5 mm LNs vs. SD > 5 mm LNs, P ≥ 0.177). The criteria covering only suspicious LNs showed higher specificity and lower unnecessary biopsy rates than the current criteria, while maintaining sensitivity in all imaging modalities.
Conclusion
Integrative evaluation of US and CT helps in reducing the proportion of indeterminate LNs and the malignancy risk among them. Nodal size did not affect the malignancy risk of LNs, and the addition of indeterminate LNs to biopsy candidates did not have an advantage in detecting LN metastases in all imaging modalities.
8.Myelin Content in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Quantitative Assessment with a Multidynamic Multiecho Sequence
Roh-Eul YOO ; Seung Hong CHOI ; Sung-Won YOUN ; Moonjung HWANG ; Eunkyung KIM ; Byung-Mo OH ; Ji Ye LEE ; Inpyeong HWANG ; Koung Mi KANG ; Tae Jin YUN ; Ji-hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2022;23(2):226-236
Objective:
This study aimed to explore the myelin volume change in patients with mild traumatic brain injury (mTBI) with post-concussion syndrome (PCS) using a multidynamic multiecho (MDME) sequence and automatic whole-brain segmentation.
Materials and Methods:
Forty-one consecutive mTBI patients with PCS and 29 controls, who had undergone MRI including the MDME sequence between October 2016 and April 2018, were included. Myelin volume fraction (MVF) maps were derived from the MDME sequence. After three dimensional T1-based brain segmentation, the average MVF was analyzed at the bilateral cerebral white matter (WM), bilateral cerebral gray matter (GM), corpus callosum, and brainstem. The Mann–Whitney U-test was performed to compare MVF and myelin volume between patients with mTBI and controls. Myelin volume was correlated with neuropsychological test scores using the Spearman rank correlation test.
Results:
The average MVF at the bilateral cerebral WM was lower in mTBI patients with PCS (median [interquartile range], 25.2% [22.6%–26.4%]) than that in controls (26.8% [25.6%–27.8%]) (p = 0.004). The region-of-interest myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (1.87 cm3 [1.70–2.05 cm3 ] vs. 2.21 cm3 [1.86– 3.46 cm3 ]; p = 0.003) and brainstem (9.98 cm3 [9.45–11.00 cm3 ] vs. 11.05 cm3 [10.10–11.53 cm3 ]; p = 0.015). The total myelin volume was lower in mTBI patients with PCS than that in controls at the corpus callosum (0.45 cm3 [0.39–0.48 cm3 ] vs. 0.48 cm3 [0.45–0.54 cm3 ]; p = 0.004) and brainstem (1.45 cm3 [1.28–1.59 cm3 ] vs. 1.54 cm3 [1.42–1.67 cm3 ]; p = 0.042). No significant correlation was observed between myelin volume parameters and neuropsychological test scores, except for the total myelin volume at the bilateral cerebral WM and verbal learning test (delayed recall) (r = 0.425; p = 0.048).
Conclusion
MVF quantified from the MDME sequence was decreased at the bilateral cerebral WM in mTBI patients with PCS. The total myelin volumes at the corpus callosum and brainstem were decreased in mTBI patients with PCS due to atrophic changes.
9.Added Value of Contrast Leakage Information over the CBV Value of DSC Perfusion MRI to Differentiate between Pseudoprogression and True Progression after Concurrent Chemoradiotherapy in Glioblastoma Patients
Elena PAK ; Seung Hong CHOI ; Chul-Kee PARK ; Tae Min KIM ; Sung-Hye PARK ; Jae-Kyung WON ; Joo Ho LEE ; Soon-Tae LEE ; Inpyeong HWANG ; Roh-Eul YOO ; Koung Mi KANG ; Tae Jin YUN
Investigative Magnetic Resonance Imaging 2022;26(1):10-19
Purpose:
To evaluate whether the added value of contrast leakage information from dynamic susceptibility contrast magnetic resonance imaging (DSC MRI) is a better prognostic imaging biomarker than the cerebral blood volume (CBV) value in distinguishing true progression from pseudoprogression in glioblastoma patients.
Materials and Methods:
Forty-nine glioblastoma patients who had undergone MRI after concurrent chemoradiotherapy with temozolomide were enrolled in this retrospective study. Twenty features were extracted from the normalized relative CBV (nCBV) and extraction fraction (EF) map of the contrast-enhancing region in each patient. After univariable analysis, we used multivariable stepwise logistic regression analysis to identify significant predictors for differentiating between pseudoprogression and true progression. Receiver operating characteristic (ROC) analysis was employed to determine the best cutoff values for the nCBV and EF features. Finally, leave-one-out cross-validation was used to validate the best predictor in differentiating between true progression and pseudoprogression.
Results:
Multivariable stepwise logistic regression analysis showed that MGMT (O 6 -methylguanine-DNA methyltransferase) and EF max were independent differentiating variables (P = 0.004 and P = 0.02, respectively). ROC analysis yielded the best cutoff value of 95.75 for the EF max value for differentiating the two groups (sensitivity, 61%; specificity, 84.6%; AUC, 0.681 ± 0.08; 95% CI, 0.524-0.837; P = 0.03). In the leave-one-out cross-validation of the EF max value, the cross-validated values for predicting true progression and pseudoprogression accuracies were 69.4% and 71.4%,respectively.
Conclusion
We demonstrated that contrast leakage information parameter from DSC MRI showed significance in differentiating true progression from pseudoprogression in glioblastoma patients.
10.Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation
Heera YOEN ; Roh-Eul YOO ; Seung Hong CHOI ; Eunkyung KIM ; Byung-Mo OH ; Dongjin YANG ; Inpyeong HWANG ; Koung Mi KANG ; Tae Jin YUN ; Ji-hoon KIM ; Chul-Ho SOHN
Korean Journal of Radiology 2021;22(1):118-130
Objective:
This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation.
Materials and Methods:
Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients.
Results:
Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041).
Conclusion
BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

Result Analysis
Print
Save
E-mail