1.Assessment of the safety and efficacy of low pathogenic avian influenza (H9N2) virus in inactivated oil emulsion vaccine in laying hens.
Jeong Hwa SHIN ; Jong Seo MO ; Jong Nyeo KIM ; In Pil MO ; Bong Do HA
Journal of Veterinary Science 2016;17(1):27-34
In Korea, several outbreaks of low pathogenic AI (H9N2) viral infections leading to decreased egg production and increased mortality have been reported on commercial farms since 1996, resulting in severe economic losses. To control the H9N2 LPAI endemic, the Korea Veterinary Authority has permitted the use of the inactivated H9N2 LPAI vaccine since 2007. In this study, we developed a killed vaccine using a low pathogenic H9N2 AI virus (A/chicken/Korea/ADL0401) and conducted safety and efficacy tests in commercial layer farms while focusing on analysis of factors that cause losses to farms, including egg production rate, egg abnormality, and feed efficiency. The egg production rate of the control group declined dramatically 5 days after the challenge. There were no changes in feed consumption of all three groups before the challenge, but rates of the control declined afterward. Clinical signs in the vaccinated groups were similar, and a slight decline in feed consumption was observed after challenge; however, this returned to normal more rapidly than the control group and commercial layers. Overall, the results of this study indicate that the safety and efficacy of the vaccine are adequate to provide protection against the AI field infection (H9N2) epidemic in Korea.
Animals
;
Chickens
;
Emulsions
;
Female
;
Influenza A Virus, H9N2 Subtype/*immunology
;
Influenza Vaccines/*immunology/*standards
;
Influenza in Birds/immunology/prevention & control
;
Oviparity
;
Specific Pathogen-Free Organisms
;
Vaccines, Inactivated/immunology
2.H5N1 Avian Influenza Pre-pandemic Vaccine Strains in China.
Hong BO ; Li Bo DONG ; Ye ZHANG ; Jie DONG ; Shu Mei ZOU ; Rong Bao GAO ; Da Yan WANG ; Yue Long SHU ;
Biomedical and Environmental Sciences 2014;27(10):763-769
OBJECTIVETo prepare the 4 candidate vaccine strains of H5N1 avian influenza virus isolated in China.
METHODSRecombinant viruses were rescued using reverse genetics. Neuraminidase (NA) and hemagglutinin (HA) segments of the A/Xinjiang/1/2006, A/Guangxi/1/2009, A/Hubei/1/2010, and A/Guangdong/1/2011 viruses were amplified by RT-PCR. Multibasic amino acid cleavage site of HA was removed and ligated into the pCIpolI vector for virus rescue. The recombinant viruses were evaluated by trypsin dependent assays. Their embryonate survival and antigenicity were compared with those of the respective wild-type viruses.
RESULTSThe 4 recombinant viruses showed similar antigenicity compared with wild-type viruses, chicken embryo survival and trypsin-dependent characteristics.
CONCLUSIONThe 4 recombinant viruses rescued using reverse genetics meet the criteria for classification of low pathogenic avian influenza strains, thus supporting the use of them for the development of seeds and production of pre-pandemic vaccines.
Animals ; Chick Embryo ; Chickens ; China ; Hemagglutinin Glycoproteins, Influenza Virus ; genetics ; metabolism ; Influenza A Virus, H5N1 Subtype ; immunology ; Influenza Vaccines ; immunology ; Influenza in Birds ; prevention & control ; virology ; Neuraminidase ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Vaccines, Synthetic ; immunology
3.A review of H7 subtype avian influenza virus.
Wen-Fei ZHU ; Rong-Bao GAO ; Da-Yan WANG ; Lei YANG ; Yun ZHU ; Yue-Long SHU
Chinese Journal of Virology 2013;29(3):245-249
Since 2002, H7 subtype avian influenza viruses (AIVs) have caused more than 100 human infection cases in the Netherlands, Italy, Canada, the United States, and the United Kingdom, with clinical illness ranging from conjunctivitis to mild upper respiratory illness to pneumonia. On March 31st, three fatal cases caused by infection of a novel reassortant H7N9 subtype were reported in Shanghai City and Anhui Province in China. With the ability of H7 subtype to cause severe human disease and the increasing isolation of subtype H7 AIVs, we highlighted the need for continuous surveillance in both humans and animals and characterization of these viruses for the development of vaccines and anti-viral drugs.
Animals
;
Chickens
;
Ducks
;
Humans
;
Influenza A virus
;
genetics
;
isolation & purification
;
pathogenicity
;
physiology
;
Influenza Vaccines
;
genetics
;
immunology
;
Influenza in Birds
;
immunology
;
prevention & control
;
virology
;
Influenza, Human
;
immunology
;
prevention & control
;
virology
;
Poultry Diseases
;
immunology
;
prevention & control
;
virology
;
Turkeys
4.Construction and immunogenicity of recombinant bacteriophage T7 vaccine expressing M2e peptides of avian influenza virus.
Hai XU ; Yi-Wei WANG ; Ying-Hua TANG ; Qi-Sheng ZHENG ; Ji-Bo HOU
Chinese Journal of Virology 2013;29(4):376-381
To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.
Animals
;
Antibodies, Viral
;
blood
;
Bacteriophage T7
;
genetics
;
immunology
;
metabolism
;
Chickens
;
Enzyme-Linked Immunosorbent Assay
;
Gene Expression Regulation, Viral
;
Immunization
;
Influenza A virus
;
genetics
;
immunology
;
Influenza Vaccines
;
immunology
;
Influenza in Birds
;
immunology
;
metabolism
;
prevention & control
;
Peptides
;
genetics
;
immunology
;
metabolism
;
Polymerase Chain Reaction
;
Recombinant Fusion Proteins
;
Specific Pathogen-Free Organisms
;
Viral Matrix Proteins
;
genetics
;
immunology
;
metabolism
5.Reverse genetic platform for inactivated and live-attenuated influenza vaccine.
Eun Ju JUNG ; Kwang Hee LEE ; Baik Lin SEONG
Experimental & Molecular Medicine 2010;42(2):116-121
Influenza vaccine strains have been traditionally developed by annual reassortment between vaccine donor strain and the epidemic virulent strains. The classical method requires screening and genotyping of the vaccine strain among various reassortant viruses, which are usually laborious and time-consuming. Here we developed an efficient reverse genetic system to generate the 6:2 reassortant vaccine virus from cDNAs derived from the influenza RNAs. Thus, cDNAs of the two RNAs coding for surface antigens, haemagglutinin and neuraminidase from the epidemic virus and the 6 internal genes from the donor strain were transfected into cells and the infectious viruses of 6:2 defined RNA ratio were rescued. X-31 virus (a high-growth virus in embryonated eggs) and its cold-adapted strain X-31 ca were judiciously chosen as donor strains for the generation of inactivated vaccine and live-attenuated vaccine, respectively. The growth properties of these recombinant viruses in embryonated chicken eggs and MDCK cell were indistinguishable as compared to those generated by classical reassortment process. Based on the reverse genetic system, we generated 6 + 2 reassortant avian influenza vaccine strains corresponding to the A/Chicken/Korea/MS96 (H9N2) and A/Indonesia/5/2005 (H5N1). The results would serve as technical platform for the generation of both injectable inactivated vaccine and the nasal spray live attenuated vaccine for the prevention of influenza epidemics and pandemics.
Animals
;
Chick Embryo
;
Chickens
;
Genetic Engineering
;
Hemagglutinins, Viral/genetics/metabolism
;
Humans
;
Influenza A Virus, H5N1 Subtype/*genetics/immunology
;
Influenza A Virus, H9N2 Subtype/*genetics/immunology
;
Influenza Vaccines/*genetics/metabolism
;
Influenza in Birds/immunology/virology
;
Influenza, Human/immunology/*prevention & control/virology
;
Neuraminidase/genetics/metabolism
;
Transgenes
;
Vaccines, Attenuated/*genetics/metabolism
;
Viral Proteins/genetics/metabolism
6.Molecular identification of the vaccine strain from the inactivated oil emulsion H9N2 low pathogenic avian influenza vaccine.
Jun Gu CHOI ; Youn Jeong LEE ; Ji Yeon KIM ; Yeon Hee KIM ; Mi Ra PAEK ; Dong Kun YANG ; Seong Wan SON ; Jae Hong KIM
Journal of Veterinary Science 2010;11(2):161-163
In order to control the H9N2 subtype low pathogenic avian influenza (LPAI), an inactivated vaccine has been used in Korea since 2007. The Korean veterinary authority permitted the use of a single H9N2 LPAI vaccine strain to simplify the evolution of the circulating virus due to the immune pressure caused by the vaccine use. It is therefore important to determine the suitability of the vaccine strain in the final inactivated oil emulsion LPAI vaccine. In this study, we applied molecular rather than biological methods to verify the suitability of the vaccine strain used in commercial vaccines and successfully identified the strain by comparing the nucleotide sequences of the hemagglutinin and neuraminidase genes with that of the permitted Korean LPAI vaccine strain. It is thought that the method used in this study might be successfully applied to other viral genes of the LPAI vaccine strain and perhaps to other veterinary oil emulsion vaccines.
Animals
;
Base Sequence
;
Birds
;
DNA, Viral/chemistry/genetics
;
Hemagglutinin Glycoproteins, Influenza Virus/chemistry/genetics
;
Influenza A Virus, H9N2 Subtype/genetics/*immunology
;
Influenza Vaccines/genetics/*immunology
;
Influenza in Birds/*immunology/prevention & control/virology
;
Molecular Sequence Data
;
Neuraminidase/chemistry/genetics
;
Polymerase Chain Reaction/veterinary
;
Republic of Korea
;
Sequence Alignment
;
Vaccines, Inactivated/genetics/immunology
7.Evaluation of a competitive ELISA for antibody detection against avian influenza virus.
Dae Sub SONG ; Youn Jeong LEE ; Ok Mi JEONG ; Yong Joo KIM ; Chan Hee PARK ; Jung Eun YOO ; Woo Jin JEON ; Jun Hun KWON ; Gun Woo HA ; Bo Kyu KANG ; Chul Seung LEE ; Hye Kwon KIM ; Byeong Yeal JUNG ; Jae Hong KIM ; Jin Sik OH
Journal of Veterinary Science 2009;10(4):323-329
Active serologic surveillance is necessary to control the spread of the avian influenza virus (AIV). In this study, we evaluated a commercially-available cELISA in terms of its ability to detect AIV antibodies in the sera of 3,358 animals from twelve species. cELISA detected antibodies against reference H1- through H15-subtype AIV strains without cross reactivity. Furthermore, the cELISA was able to detect antibodies produced following a challenge of the AIV H9N2 subtype in chickens, or following vaccination of the AIV H9 or H5 subtypes in chickens, ducks and geese. Next, we tested the sensitivity and specificity of the cELISA with sera from twelve different animal species, and compared these results with those obtained by the hemagglutination-inhibition (HI) test, the "gold standard" in AIV sera surveillance, a second commercially-available cELISA (IZS ELISA), or the agar gel precipitation (AGP) test. Compared with the HI test, the sensitivities and specificities of cELISA were 95% and 96% in chicken, 86% and 88% in duck, 97% and 100% in turkey, 100% and 87% in goose, and 91% and 97% in swine, respectively. The sensitivities and specificities of the cELISA in this study were higher than those of IZS ELISA for the duck, turkey, goose, and grey partridge sera samples. The results of AGP test against duck and turkey sera also showed significant correlation with the results of cELISA (R-value >0.9). In terms of flock sensitivity, the cELISA correlated better with the HI test than with commercially-available indirect ELISAs, with 100% flock sensitivity.
Animals
;
Antibodies, Viral/*blood
;
Birds
;
Enzyme-Linked Immunosorbent Assay/methods/*veterinary
;
Horses
;
Influenza A virus/*immunology
;
Influenza Vaccines/immunology
;
Influenza in Birds/blood/*immunology/prevention & control
;
Sensitivity and Specificity
;
Serologic Tests
;
Species Specificity
;
Swine
8.An inactivated vaccine to control the current H9N2 low pathogenic avian influenza in Korea.
Jun Gu CHOI ; Youn Jeong LEE ; Yong Joo KIM ; Eun Kyoung LEE ; Ok Mi JEONG ; Haan Woo SUNG ; Jae Hong KIM ; Jun Hun KWON
Journal of Veterinary Science 2008;9(1):67-74
The H9N2 subtype low pathogenic avian influenza is one of the most prevalent avian diseases worldwide, and was first documented in 1996 in Korea. This disease caused serious economic loss in Korea's poultry industry. In order to develop an oil-based inactivated vaccine, a virus that had been isolated in 2001 (A/chicken/Korea/01310/ 2001) was selected based on its pathogenic, antigenic, and genetic properties. However, in animal experiments, the efficacy of the vaccine was found to be very low without concentration of the antigen (2(7) to 2(10) hemagglutinin unit). In order to overcome the low productivity, we passaged the vaccine candidate virus to chicken eggs. After the 20th passage, the virus was approximately ten times more productive compared with the parent virus. For the most part, the passaged virus maintained the hemagglutinin cleavage site amino acid motif (PATSGR/GLF) and had only three amino acid changes (T133N, V216G, E439D, H3 numbering) in the hemagglutinin molecule, as well as 18 amino acid deletions (55-72) and one amino acid change (E54D) in the NA stalk region. The amino acid changes did not significantly affect the antigenicity of the vaccine virus when tested by hemagglutination inhibition assay. Though not complete, the vaccine produced after the 20th passage of the virus (01310 CE20) showed good protection against a homologous and recent Korean isolate (A/chicken/Korea/Q30/2004) in specific pathogen- free chickens. The vaccine developed in this study would be helpful for controlling the H9N2 LPAI in Korea.
Animals
;
Chickens
;
Gene Expression Regulation, Viral
;
Hemagglutinins/genetics
;
Influenza A Virus, H9N2 Subtype/*immunology/pathogenicity
;
Influenza Vaccines/*immunology
;
Influenza in Birds/epidemiology/*prevention & control/*virology
;
Korea/epidemiology
;
Neuraminidase/genetics
;
Specific Pathogen-Free Organisms
;
Time Factors
;
Vaccines, Inactivated/*immunology
9.Avian Influenza: Should China Be Alarmed?.
Zhaoliang SU ; Huaxi XU ; Jianguo CHEN
Yonsei Medical Journal 2007;48(4):586-594
Avian influenza has emerged as one of the primary public health concern of the 21st century. Influenza strain H5N1 is capable of incidentally infecting humans and other mammals. Since their reemergence in 2003, highly pathogenic avian influenza A (H5N1) viruses have been transmitted from poultry to humans (by direct or indirect contact with infected birds) in several provinces of Mainland China, which has resulted in 22 cases of human infection and has created repercussions for the Chinese economy. People have been concerned whether a new pandemic will occur in the future. The eradication of pathogenic avian influenza viruses appears to be the most effective way to prevent an influenza pandemic. This paper will examine the features of H5N1, including incidence, infection, immunity, clinical management, prevention and control, and therapy in Mainland China.
Adolescent
;
Adult
;
Animals
;
Birds
;
Child
;
China/epidemiology
;
Disease Outbreaks/prevention & control
;
Female
;
Humans
;
Incidence
;
*Influenza A Virus, H5N1 Subtype
;
Influenza in Birds/prevention & control
;
Influenza, Human/*epidemiology/immunology/therapy
;
Male
;
Zoonoses/epidemiology/transmission/virology
10.Strategic analysis on responding human avian flu and flu pandemic in China.
Biomedical and Environmental Sciences 2006;19(2):158-161
Animals
;
Antiviral Agents
;
administration & dosage
;
therapeutic use
;
Birds
;
China
;
Communicable Disease Control
;
Disaster Planning
;
methods
;
organization & administration
;
Disease Outbreaks
;
prevention & control
;
Global Health
;
Humans
;
Influenza A Virus, H5N1 Subtype
;
immunology
;
Influenza Vaccines
;
administration & dosage
;
therapeutic use
;
Influenza in Birds
;
epidemiology
;
prevention & control
;
transmission
;
virology
;
Influenza, Human
;
epidemiology
;
prevention & control
;
transmission
;
virology
;
Poultry
;
Vaccination

Result Analysis
Print
Save
E-mail