1.Titanium particles in peri-implantitis: distribution, pathogenesis and prospects.
Long CHEN ; Zian TONG ; Hongke LUO ; Yuan QU ; Xinhua GU ; Misi SI
International Journal of Oral Science 2023;15(1):49-49
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Humans
;
Peri-Implantitis/pathology*
;
Titanium/pharmacology*
;
Dental Implants/adverse effects*
;
Osteolysis/pathology*
;
Inflammation/chemically induced*
2.Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9.
Ya ZHONG ; Bo-Wen ZHANG ; Jin-Tao LI ; Xin ZENG ; Jun-Xia PEI ; Ya-Mei ZHANG ; Yi-Xi YANG ; Fu-Lun LI ; Yu DENG ; Qi ZHAO
Journal of Integrative Medicine 2023;21(6):584-592
OBJECTIVE:
To explore whether the ethanol extract of Herpetospermum caudigerum Wall (EHC), a Xizang medicinal plant traditionally used for treating liver diseases, can improve imiquimod-induced psoriasis-like skin inflammation.
METHODS:
Immunohistochemistry and immunofluorescence staining were used to determine the effects of topical EHC use in vivo on the skin pathology of imiquimod-induced psoriasis in mice. The protein levels of interferon-γ (IFN-γ), tumor necrosis factor-α (TNF-α), and interleukin-17A (IL-17A) in mouse skin samples were examined using immunohistochemical staining. In vitro, IFN-γ-induced HaCaT cells with or without EHC treatment were used to evaluate the expression of keratinocyte-derived intercellular cell adhesion molecule-1 (ICAM-1) and chemokine CXC ligand 9 (CXCL9) using Western blotting and reverse transcription-quantitative polymerase chain reaction. The protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132 were utilized to validate the EHC-mediated mechanism underlying degradation of ICAM-1 and CXCL9.
RESULTS:
EHC improved inflammation in the imiquimod-induced psoriasis mouse model and reduced the levels of IFN-γ, TNF-α, and IL-17A in psoriatic lesions. Treatment with EHC also suppressed ICAM-1 and CXCL9 in epidermal keratinocytes. Further mechanistic studies revealed that EHC suppressed keratinocyte-derived ICAM-1 and CXCL9 by promoting ubiquitin-proteasome-mediated protein degradation rather than transcriptional repression. Seven primary compounds including ehletianol C, dehydrodiconiferyl alcohol, herpetrione, herpetin, herpetotriol, herpetetrone and herpetetrol were identified from the EHC using ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry.
CONCLUSION
Topical application of EHC ameliorates psoriasis-like skin symptoms and improves the inflammation at the lesion sites. Please cite this article as: Zhong Y, Zhang BW, Li JT, Zeng X, Pei JX, Zhang YM, Yang YX, Li FL, Deng Y, Zhao Q. Ethanol extract of Herpetospermum caudigerum Wall ameliorates psoriasis-like skin inflammation and promotes degradation of keratinocyte-derived ICAM-1 and CXCL9. J Integr Med. 2023; 21(6): 584-592.
Animals
;
Mice
;
Interleukin-17/metabolism*
;
Intercellular Adhesion Molecule-1
;
Imiquimod/adverse effects*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Ligands
;
Psoriasis/chemically induced*
;
Keratinocytes
;
Inflammation/drug therapy*
;
Chemokines/metabolism*
;
Interferon-gamma/metabolism*
;
Disease Models, Animal
;
Mice, Inbred BALB C
3.Pachymic acid protects against Crohn's disease-like intestinal barrier injury and colitis in miceby suppressingintestinal epithelial cell apoptosis via inhibiting PI3K/AKT signaling.
Rongrong SHAO ; Zi YANG ; Wenjing ZHANG ; Nuo ZHANG ; Yajing ZHAO ; Xiaofeng ZHANG ; Lugen ZUO ; Sitang GE
Journal of Southern Medical University 2023;43(6):935-942
OBJECTIVE:
To investigate the effect of pachymic acid (PA) against TNBS-induced Crohn's disease (CD)-like colitis in mice and explore the possible mechanism.
METHODS:
Twenty-four C57BL/6J mice were randomized equally into control group, TNBS-induced colitis model group and PA treatment group. PA treatment was administered via intraperitoneal injection at the daily dose of 5 mg/kg for 7 days, and the mice in the control and model groups were treated with saline. After the treatments, the mice were euthanized for examination of the disease activity index (DAI) of colitis, body weight changes, colon length, intestinal inflammation, intestinal barrier function and apoptosis of intestinal epithelial cells, and the expressions of TNF-α, IL-6 and IL-1β in the colonic mucosa were detected using ELISA. The possible treatment targets of PA in CD were predicted by network pharmacology. String platform and Cytoscape 3.7.2 software were used to construct the protein-protein interaction (PPI) network. David database was used to analyze the GO function and KEGG pathway; The phosphorylation of PI3K/AKT in the colonic mucosal was detected with Western blotting.
RESULTS:
PA significantly alleviated colitis in TNBS-treated mice as shown by improvements in the DAI, body weight loss, colon length, and histological inflammation score and lowered levels of TNF-α, IL-6 and IL-1β. PA treatment also significantly improved FITC-dextran permeability, serum I-FABP level and colonic transepithelial electrical resistance, and inhibited apoptosis of the intestinal epithelial cells in TNBS-treated mice. A total of 248 intersection targets were identified between PA and CD, and the core targets included EGFR, HRAS, SRC, MMP9, STAT3, AKT1, CASP3, ALB, HSP90AA1 and HIF1A. GO and KEGG analysis showed that PA negatively regulated apoptosis in close relation with PI3K/AKT signaling. Molecular docking showed that PA had a strong binding ability with AKT1, ALB, EGFR, HSP90AA1, SRC and STAT3. In TNBS-treated mice, PA significantly decreased p-PI3K and p-AKT expressions in the colonic mucosa.
CONCLUSION
PA ameliorates TNBS-induced intestinal barrier injury in mice by antagonizing apoptosis of intestinal epithelial cells possibly by inhibiting PI3K/AKT signaling.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Crohn Disease
;
Phosphatidylinositol 3-Kinases
;
Proto-Oncogene Proteins c-akt
;
Interleukin-6
;
Molecular Docking Simulation
;
Tumor Necrosis Factor-alpha
;
Colitis/chemically induced*
;
Inflammation
;
Apoptosis
;
ErbB Receptors
4.Alcohol extract of root and root bark of Toddalia asiatica alleviates CIA in rats through anti-inflammatory and proapoptotic effects.
Zong-Xing ZHANG ; Lu JIANG ; Dao-Zhong LIU ; Bo-Nan TAO ; Zi-Ming HOU ; Meng-Jie TIAN ; Jia FENG ; Lin YUAN
China Journal of Chinese Materia Medica 2023;48(8):2203-2211
This study aims to investigate the therapeutic effect of alcohol extract of root and root bark of Toddalia asiatica(TAAE) on collagen-induced arthritis(CIA) in rats through phosphatidylinoinosidine-3 kinase/protein kinase B(PI3K/Akt) signaling pathway. To be specific, CIA was induced in rats, and then the rats were treated(oral, daily) with TAAE and Tripterygium Glycoside Tablets(TGT), respectively. The swelling degree of the hind leg joints was scored weekly. After 35 days of administration, the histopathological changes were observed based on hematoxylin and eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to detect the levels of cytokines [tumor necrosis factor-α(TNF-α), interleukin(IL)-6)]. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) staining was performed to detect the apoptosis of synoviocytes in rats. Western blot was used to detect the expression levels of apoptosis-related proteins B-cell lymphoma 2(Bcl-2)-associated X(Bax), Bcl-2, and caspase-3 and pathway-related proteins phosphoinositide 3-kinase(PI3K), phosphorylated(p)-PI3K, protein kinase B(Akt), and p-Akt. RT-qPCR was conducted to examine the mRNA levels of Bax, Bcl-2, caspase-3, TNF-α, IL-6, and IL-1β and pathway-related proteins PI3K, p-PI3K, Akt, and p-Akt. TAAE can alleviate the joint swelling in CIA rats, reduce serum levels of inflammatory cytokines, improve synovial histopathological changes, promote apoptosis of synoviocytes, and inhibit synovial inflammation. In addition, RT-qPCR and Western blot results showed that TAAE up-regulated the level of Bax, down-regulated the level of Bcl-2, and activated caspase-3 to promote apoptosis in synoviocytes. TAAE effectively down-regulated the protein levels of p-PI3K and p-Akt. In this study, TAAE shows therapeutic effect on CIA in rats and reduces the inflammation. The mechanism is that it suppresses PI3K/Akt signaling pathway and promotes synoviocyte apoptosis. Overall, this study provides a new clue for the research on the anti-inflammatory mechanism of TAAE and lays a theoretical basis for the better clinical application of TAAE in the treatment of inflammatory and autoimmune diseases.
Rats
;
Animals
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Caspase 3/genetics*
;
Tumor Necrosis Factor-alpha/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
Plant Bark
;
Anti-Inflammatory Agents/therapeutic use*
;
Arthritis, Experimental/chemically induced*
;
Inflammation/drug therapy*
;
Cytokines/metabolism*
;
Proto-Oncogene Proteins c-bcl-2
;
Apoptosis
5.Effect of Maxing Shigan Decoction and dissembled prescriptions against airway inflammation in RSV-aggravated asthma and mechanism of regulating TRPV1.
Meng-Wen LI ; Xin-Sheng FAN ; Li-Ping ZHOU ; Mo LIU ; Er-Xin SHANG
China Journal of Chinese Materia Medica 2022;47(21):5872-5881
This study investigated the effect of Maxing Shigan Decoction(MXSGD) and its disassembled prescriptions against the airway inflammation in respiratory syncytial virus(RSV)-aggravated asthma and the regulation of transient receptor potential vanilloid-1(TRPV1). To be specific, ovalbumin(OVA) and RSV were used to induce aggravated asthma in mice(female, C57BL/6). Then the model mice were intervened by MXSGD and the disassembled prescriptions. The eosinophil(EOS) in peripheral blood, inflammatory cells in bronchoalveolar lavage fluid(BALF), enhanced pause(Penh) variation, and lung pathological damage in each group were observed, and the changes of interleukin(IL)-4, IL-13, substance P(SP), and prostaglandin E2(PGE2) in BALF were mea-sured by enzyme-linked immunosorbent assay(ELISA). Quantitative real time polymerase chain reaction(qPCR) and Western blot were used to detect mRNA and protein of TRPV1 in mouse lung tissue. In the in vitro experiment, 16 HBE cells were stimulated with IL-4 and RSV. Then the changes of TRPV1 expression after the intervention with the serum containing MXSGD and its disassembled prescriptions were observed. Besides, the intracellular Ca~(2+) level after the stimulation with TRPV1 agonist was evaluated. The results showed that the mice in the model group had obvious asthma phenotype, the levels of various inflammatory cells in the peripheral blood and BALF and Penh were significantly increased(P<0.05, P<0.01), and the lung tissue was severely damaged compared with the control group. Compared with the model group, the levels of EOS in the peripheral blood and BALF were significantly decreased in the MXSGD group, the SG group and the MXC group(P<0.05, P<0.01). The levels of WBC and neutrophils in BALF were significantly decreased in the MXSGD group and SG group(P<0.01), the levels of neutrophils in BALF were decreased in the MXC group(P<0.05). The improvement effect of the MXGSD on the level of inflammatory cells in peripheral blood and BALF was better than that of two disassembled groups(P<0.05, P<0.01). After 50 mg·mL~(-1) acetylcholine chloride stimulation, the Penh values of the MXSGD group and the MXC group significantly decreased(P<0.01), and the Penh value of the SG group decreased(P<0.05). The levels of IL-4, IL-13, PGE2 and SP in BALF could be significantly decreased in the MXSGD group(P<0.05, P<0.01), the levels of IL-13 and PGE2 in BALF could be decreased in the MXC group(P<0.05, P<0.01), and the levels of IL-13, PGE2 and SP in BALF could be decreased in the SG group(P<0.05, P<0.01). MXSGD could down-regulate the protein and mRNA expression of TRPV1 in lung tissue(P<0.05, P<0.01). The serum containing MXSGD and its disassembled prescriptions could down-regulate TRPV1 expression in 16 HBE cells stimulated by IL-4 combined with RSV and inhibit the inward flow of Ca~(2+) induced by TRPV1 agonist, especially the serum containing MXSGD which showed better effect than the serum containing disassembled ones(P<0.05). In vivo and in vitro experiments verified the protective effect of MXSGD and its disassembled prescriptions against airway inflammation in RSV-exacerbated asthma, the whole decoction thus possessed synergy in treating asthma, with better performance than the dissembled prescriptions. Different groups of prescription had made contributions in improving airway hyperresponsiveness, anti-allergy and anti-inflammation. The mechanism is the likelihood that it regulates TRPV1 channel and levels of related inflammatory mediators.
Female
;
Mice
;
Animals
;
Interleukin-13/metabolism*
;
Interleukin-4/metabolism*
;
Dinoprostone
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Asthma/chemically induced*
;
Lung
;
Bronchoalveolar Lavage Fluid
;
Ovalbumin/adverse effects*
;
Inflammation/metabolism*
;
RNA, Messenger/metabolism*
;
Prescriptions
;
Disease Models, Animal
;
TRPV Cation Channels/metabolism*
6.Study on the difference of curative effect of conventional mercury displacement treatment on mercury in brain and kidney.
Zhen Zhen GAO ; Yu Jie PAN ; Jing MA ; Hui Ling LI ; Xue MEI ; Yu Guo SONG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(4):255-259
Objective: To explore the expulsion effect of sodium dimercaptopropanesulfonate (DMPS) on mercury in different organs of mercury poisoning and the therapeutic effect of glutathione (GSH) combined with antioxidant therapy on mercury poisoning. Methods: In February 2019, 50 SPF male SD rats were randomly divided into 5 groups, 10 rats in each group: A (saline negative control group) , B (HgCL2 positive control group) , treatment group (C: intramuscular injection of DMPS 15 mg/kg treatment, D: intramuscular injection of DMPS30 mg/kg treatment, E: intramuscular injection of DMPS 15 mg/kg and intraperitoneal injection of GSH200 mg/kg treatment) . Rats in group B, C, D and E were subcutaneously injected with mercury chloride solution (1 mg/kg) to establish a rat model of subacute mercury poisoning kidney injury. Rats in group A were subcutaneously injected with normal saline. After the establishment of the model, rats in the treatment group were injected with DMPS and GSH. Rats in group A and group B were injected with normal saline. At 21 d (treatment 7 d) and 28 d (treatment 14 d) after exposure, urine and blood samples of 5 rats in each group were collected. Blood biochemistry, urine mercury, urine microalbumin and mercury content in renal cortex, cerebral cortex and cerebellum were detected. Results: After exposure to mercury, the contents of mercury in renal cortex, cerebrum and cerebellum of rats in group B, C, D and E increased, and urine microalbumin increased. Pathology showed renal tubular injury and renal interstitial inflammation. Compared with group B, urinary mercury and renal cortex mercury in group C, D and E decreased rapidly after DMPS treatment, and there was no significant decrease in mercury levels in cerebellum and cerebral cortex of rats, accompanied by transient increase in urinary albumin after DMPS treatment (P<0.05) ; the renal interstitial inflammation in group E was improved after GSH treatment. There was a positive correlation between urinary mercury and the contents of mercury in renal cortex, cerebral cortex and cerebellum (r=0.61, 0.47, 0.48, P<0.05) . Conclusion: DMPS mercury expulsion treatment can significantly reduce the level of metal mercury in the kidney, and there is no significant change in the level of metal mercury in the cortex and cerebellum.
Animals
;
Brain/drug effects*
;
Glutathione
;
Inflammation
;
Kidney/drug effects*
;
Kidney Diseases/chemically induced*
;
Male
;
Mercuric Chloride/therapeutic use*
;
Mercury/urine*
;
Mercury Poisoning/drug therapy*
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution/therapeutic use*
;
Unithiol/therapeutic use*
7.Inhibition of TAK1 aggravates airway inflammation by increasing RIPK1 activity and promoting macrophage death in a mouse model of toluene diisocyanate-induced asthma.
Shu Luan YANG ; Wen Qu ZHAO ; Xian Ru PENG ; Zi Han LAN ; Jun Wen HUANG ; Hui Shan HAN ; Ying CHEN ; Shao Xi CAI ; Hai Jin ZHAO
Journal of Southern Medical University 2022;42(2):181-189
OBJECTIVE:
To explore the effect of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) on toluene diisocyanate (TDI)-induced allergic airway inflammation in mice.
METHODS:
Thirty-two mice were randomly divided into AOO group, AOO+5Z-7-Oxozeaenol group, TDI group, and TDI+5Z-7-Oxozeaenol group. Another 32 mice were randomly divided into AOO group, TDI group, TDI +5Z-7-Oxozeaenol group, and TDI +5Z-7-Oxozeaenol + Necrostatin-1 group. TAK1 inhibitor (5Z-7-Oxozeaenol, 5 mg/kg) and/or RIPK1 inhibitor (Necrostatin-1, 5 mg/kg) were used before each challenge. Airway responsiveness, airway inflammation and airway remodeling were assessed after the treatments. We also examined the effect of TDI-human serum albumin (TDI-HSA) conjugate combined with TAK1 inhibitor on the viability of mouse mononuclear macrophages (RAW264.7) using CCK8 assay. The expressions of TAK1, mitogen-activated protein kinase (MAPK) and receptor interacting serine/threonine protease 1 (RIPK1) signal pathway in the treated cells were detected with Western blotting. The effects of RIPK1 inhibitor on the viability of RAW264.7 cells and airway inflammation of the mouse models of TDI-induced asthma were evaluated.
RESULTS:
TAK1 inhibitor aggravated TDI-induced airway inflammation, airway hyper responsiveness and airway remodeling in the mouse models (P < 0.05). Treatment with TAK1 inhibitor significantly decreased the viability of RAW264.7 cells, which was further decreased by co-treatment with TDI-HSA (P < 0.05). TAK1 inhibitor significantly decreased the level of TAK1 phosphorylation and activation of MAPK signal pathway induced by TDI-HSA (P < 0.05). Co-treatment with TAK1 inhibitor and TDI-HSA obviously increased the level of RIPK1 phosphorylation and caused persistent activation of caspase 8 (P < 0.05). RIPK1 inhibitor significantly inhibited the reduction of cell viability caused by TAK1 inhibitor and TDI-HSA (P < 0.05) and alleviated the aggravation of airway inflammation induced by TAK1 inhibitors in TDI-induced mouse models (P < 0.05).
CONCLUSION
Inhibition of TAK1 aggravates TDI-induced airway inflammation and hyperresponsiveness and may increase the death of macrophages by enhancing the activity of RIPK1 and causing persistent activation of caspase 8.
Animals
;
Asthma/chemically induced*
;
Inflammation
;
Macrophages
;
Mice
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
Respiratory System
;
Toluene 2,4-Diisocyanate/adverse effects*
8.Astaxanthin inhibits inflammation of human periodontal ligament cells induced by lipopolysaccharide.
Congman XIE ; Min LIN ; Haonan TIAN ; Lin ZHANG ; Aishu REN
Journal of Central South University(Medical Sciences) 2021;46(3):227-233
OBJECTIVES:
Human periodontal ligament cells (hPDLCs) are important source of periodontal tissue reconstruction. Under chronic inflammation, the multi-directional differentiation potential and chemotaxis in hPDLCs are decreased. Therefore, inhibiting inflammatory microenvironment and improving the functional characteristics of stem cells can better promote periodontal tissue reconstruction. This study was to investigate the effect of astaxanthin (AST) on lipopolysaccharide (LPS)-induced inflammation in hPDLCs and the underlying mechanisms.
METHODS:
hPDLCs were isolated and cultured in vitro, and vimentin and keratin immunocytochemical staining were used to identify hPDLCs. CCK-8 assay was used to measure the effects of AST (1, 5, 10, 20, 50, 100, and 200 μmol/L) on proliferation of hPDLCs. Quantitative RT-PCR (RT-qPCR) and ELISA were used to measure the mRNA and protein expression of inflammatory factors (IL-6, IL-1β, and TNF-α) in the control (Con) group, the LPS group, and the LPS+AST (5, 10, 20, and 50 μmol/L) group. Western blotting was used to detect the protein expression of IKBα, phosphorylated IKBα (p-IKBα), and p65 in the Con group, the LPS group, the AST (20 μmol/L) group, and the LPS+AST (20 μmol/L) group. After 10 μmol/L PDTC treatment, the mRNA and protein expressions of IL-6, IL-1β, and TNF-α were detected by RT-qPCR and ELISA.
RESULTS:
Cell morphology and immunocytochemical staining showed that the cells were in line with the characteristics of hPDLCs. Treatment with AST could promote the proliferation of hPDLCs, which reached the peak at 20 μmol/L. The mRNA and protein expressions of IL-6, IL-1β, and TNF-α in the LPS group were higher than those in the Con group (all
CONCLUSIONS
AST promotes the proliferation of hPDLCs, which is related to suppression of LPS-induced the secretion of inflammatory factors via inhibiting the activation of NF-κB signaling pathway.
Cells, Cultured
;
Humans
;
Inflammation/chemically induced*
;
Lipopolysaccharides
;
NF-kappa B
;
Periodontal Ligament
;
Tumor Necrosis Factor-alpha/genetics*
;
Xanthophylls
9.Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice.
Zhixin PENG ; Xiaoheng LI ; Jun LI ; Yuan DONG ; Yuhao GAO ; Yajin LIAO ; Meichen YAN ; Zengqiang YUAN ; Jinbo CHENG
Neuroscience Bulletin 2021;37(12):1671-1682
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K
Animals
;
Depression/chemically induced*
;
Inflammation
;
Lipopolysaccharides/toxicity*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Microglia
;
NF-kappa B
;
Neuroinflammatory Diseases
10.Study on visfatin-induced inflammation and necroptosis via LOX-1 in human umbilical vein endothelial cells.
Xiaoyu HAN ; Wenchao WU ; Xiaojing LIU ; Ye ZHU
Journal of Biomedical Engineering 2020;37(5):834-841
The aim of the study is to identify the effects and underlying mechanisms of visfatin on inflammation and necroptosis in vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were stimulated with visfatin or pretreated with Polyinosinic acid (LOX-1 inhibitor). By using the Western blot, RT-PCR, immunocytochemistry, enzyme-linked immunosorbent assay (ELISA), MTT and flow cytometry technique, the occurrence of inflammation and necroptosis in HUVECs were evaluated. Our results showed that 100 ng/mL visfatin significantly increased the mRNA and protein expression of monocyte chemotactic protein 1 (MCP-1) and LOX-1 after 24 hours' treatment in HUVECs. However, pretreatment with Polyinosinic acid could significantly reduce the expression of MCP-1 compared with visfatin group. Additionally, 100 ng/mL visfatin could induce the production of necrotic features and increase the mRNA expression of BMF (one of the markers of necroptosis), while pretreating with Polyinosinic acid markedly downregulated the mRNA expression of BMF gene and promoted the cell proliferation. These results indicate that visfatin might induce inflammation and necroptosis via LOX-1 in HUVECs, suggesting that visfatin plays a central role in the development of atherosclerosis.
Cells, Cultured
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Inflammation/chemically induced*
;
Necroptosis
;
Nicotinamide Phosphoribosyltransferase
;
Scavenger Receptors, Class E/genetics*

Result Analysis
Print
Save
E-mail