2.Coexisting Macular Hole and Uveal Melanoma: A Case Series and Literature Review
Yeji KIM ; So Hyun YU ; Yong Joon KIM ; Eun Young CHOI ; Sung Chul LEE ; Christopher Seungkyu LEE
Korean Journal of Ophthalmology 2025;39(2):170-180
Purpose:
To report five cases of macular hole (MH) coexisting with uveal melanoma (UM) and review the literature.
Methods:
Seventeen patients (5 new and 12 from previous reports) with coexisting MH and UM were reviewed. The patients were divided into two groups based on whether the MH was diagnosed before or after tumor treatment. The clinical features, pathogenesis, management options, and clinical outcomes were reviewed.
Results:
Of 505 patients with UM in our institution, 5 (1.0%) had a concurrent MH in the ipsilateral eye. The 17 patients reviewed had a mean age of 63.9 years at the time of MH diagnosis. Of 16 patients with available data on sex, 11 (64.7%) were female. There were no major differences in the demographic or clinical data of the groups. Of the 15 known tumor locations, 6 (35.3%) were juxtapapillary or macular. In patients who developed MH after UM treatment, the durations from tumor treatment (radiotherapy or transpupillary thermotherapy) to MH diagnosis were 3 to 56 months (median, 8.5 months). MH surgery was performed in nine eyes, and hole closure was achieved in seven eyes with postoperative data. The mean visual acuity showed a tendency of improvement after surgery. No intraocular or extraocular tumor dissemination associated with surgery was observed.
Conclusions
MH is observed in approximately 1% of patients with UM, either before or after tumor treatment. Of patients with coexisting MH and UM, MH surgery appears to be safe and effective in those with stable tumors and visual potential.
3.Reinjection in Patients with Intraocular Inflammation Development after Intravitreal Brolucizumab Injection
Myung Ae KIM ; Soon Il CHOI ; Jong Min KIM ; Hyun Sub OH ; Yong Sung YOU ; Won Ki LEE ; Soon Hyun KIM ; Oh Woong KWON ; Ju Young KIM
Korean Journal of Ophthalmology 2025;39(3):213-221
Purpose:
To investigate the outcomes of brolucizumab reinjection after intraocular inflammation (IOI) development.
Methods:
This retrospective study analyzed patients with brolucizumab injections from April 2021 to January 2024. Patients who developed IOI after brolucizumab were included and categorized into subgroups depending on reinjection, discontinuation, and further IOI development.
Results:
A total of 472 eyes of 432 patients received brolucizumab injections. Thirty-eight cases developed IOI at least once, and 25 continued brolucizumab. Sixteen cases had no more IOI events, and nine experienced a second or more IOI events. Among the nine cases, three maintained brolucizumab injections despite IOI recurrence. The incidence of IOI was 8.1% based on the number of eyes (38 of 472 eyes) and 2.0% based on the number of brolucizumab injections (50 of 2,468 injections). The incidence of occlusive retinal vasculitis was 0.2% (1 of 472 eyes). The recurrence rate was 23.7% (9 of 38 eyes). The average number of injections between the first brolucizumab injection and the injection date on which IOI first developed was 2.15 times in the no-reinjection group, 3.44 times in the no-IOI-recurrence group, and 2.0 times in the second-IOI-episode group. Time to IOI occurrence in cases with first IOI episode was 18.60 ± 16.73 days, with 15 cases developing IOI within 1 week.
Conclusions
This study elucidates the real-world incidence of brolucizumab associated IOIs, with a description of information related to reinjections after the IOI episodes. A comprehensive understanding of brolucizumab reinjection is essential for its optimal utilization.
5.Two Cases of Pancreatobiliary Disease Complications Treated Using Over-the-Scope Clip
Byung Soo KWAN ; Bo Ram SUNG ; Kwang Min KIM
Korean Journal of Pancreas and Biliary Tract 2025;30(1):26-30
The over-the-scope clip (OTSC) system is a powerful full-thickness suturing device used for closing refractory bleeding, perforations, and fistulas in gastrointestinal diseases, offering greater force than conventional clips. Here, we report two cases of pancreatobiliary disease treated using OTSC. The first case involved the successful OTSC ligation of a colonic fistula caused by necrotizing pancreatitis, and the second was a duodenal perforation due to stent migration, which was also successfully treated with OTSC. These cases indicate that OTSC can be beneficial for pancreatobiliary diseases, potentially eliminating the need for surgery when endoscopic treatment is successful.
6.Eosinophilic Cholangitis Diagnosed in a Patient with Abnormal Liver Enzymes: A Case Report
Sung Hoon CHANG ; Jun Yeol KIM ; Yong Soo SONG ; Tae Seung LEE ; Jin Ho CHOI ; Woo Hyun PAIK ; Sang Hyub LEE ; Ji Kon RYU ; In Rae CHO
Korean Journal of Pancreas and Biliary Tract 2025;30(1):19-25
It is difficult to determine a cause of bile duct stricture and dilatation. Eosinophilic cholangitis, a rare benign condition, may be one cause of bile duct stricture and dilatation. It can be evaluated using various methods of histopathology, radiographs, endoscopy, and hematologic findings. Treatment generally involves steroid therapy which can lead to improvement. This case report will discuss eosinophilic cholangitis, emphasizing that while it can easily be overlooked but should be considered in differential diagnoses.
7.Evaluation of Image Quality and Scan Time Efficiency in Accelerated 3D T1-Weighted Pediatric Brain MRI Using Deep Learning-Based Reconstruction
Hyunsuk YOO ; Hee Eun MOON ; Soojin KIM ; Da Hee KIM ; Young Hun CHOI ; Jeong-Eun CHEON ; Joon Sung LEE ; Seunghyun LEE
Korean Journal of Radiology 2025;26(2):180-192
Objective:
This study evaluated the effect of an accelerated three-dimensional (3D) T1-weighted pediatric brain MRI protocol using a deep learning (DL)-based reconstruction algorithm on scan time and image quality.
Materials and Methods:
This retrospective study included 46 pediatric patients who underwent conventional and accelerated, pre- and post-contrast, 3D T1-weighted brain MRI using a 3T scanner (SIGNA Premier; GE HealthCare) at a single tertiary referral center between March 1, 2023, and April 30, 2023. Conventional scans were reconstructed using intensity Filter A (Conv), whereas accelerated scans were reconstructed using intensity Filter A (Fast_A) and a DL-based algorithm (Fast_DL).Image quality was assessed quantitatively based on the coefficient of variation, relative contrast, apparent signal-to-noise ratio (aSNR), and apparent contrast-to-noise ratio (aCNR) and qualitatively according to radiologists’ ratings of overall image quality, artifacts, noisiness, gray-white matter differentiation, and lesion conspicuity.
Results:
The acquisition times for the pre- and post-contrast scans were 191 and 135 seconds, respectively, for the conventional scan. With the accelerated protocol, these were reduced to 135 and 80 seconds, achieving time reductions of 29.3% and 40.7%, respectively. DL-based reconstruction significantly reduced the coefficient of variation, improved the aSNR, aCNR, and overall image quality, and reduced the number of artifacts compared with the conventional acquisition method (all P < 0.05). However, the lesion conspicuity remained similar between the two protocols.
Conclusion
Utilizing a DL-based reconstruction algorithm in accelerated 3D T1-weighted pediatric brain MRI can significantly shorten the acquisition time, enhance image quality, and reduce artifacts, making it a viable option for pediatric imaging.
8.Imaging Findings of Complications of New Anticancer Drugs
Ji Sung JANG ; Hyo Jung PARK ; Chong Hyun SUH ; Sang Eun WON ; Eun Seong LEE ; Nari KIM ; Do-Wan LEE ; Kyung Won KIM
Korean Journal of Radiology 2025;26(2):156-168
The anticancer drugs have evolved significantly, spanning molecular targeted therapeutics (MTTs), immune checkpoint inhibitors (ICIs), chimeric antigen receptor T-cell (CAR-T) therapy, and antibody-drug conjugates (ADCs). Complications associated with these drugs vary widely based on their mechanisms of action. MTTs that target angiogenesis can often lead to complications related to ischemia or endothelial damage across various organs, whereas non-anti-angiogenic MTTs present unique complications derived from their specific pharmacological actions. ICIs are predominantly associated with immunerelated adverse events, such as pneumonitis, colitis, hepatitis, thyroid disorders, hypophysitis, and sarcoid-like reactions. CAR-T therapy causes unique and severe complications including cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. ADCs tend to cause complications associated with cytotoxic payloads. A comprehensive understanding of these drug-specific toxicities, particularly using medical imaging, is essential for providing optimal patient care. Based on this knowledge, radiologists can play a pivotal role in multidisciplinary teams. Therefore, radiologists must stay up-to-date on the imaging characteristics of these complications and the mechanisms underlying novel anticancer drugs.
9.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus.
10.Performance of Digital Mammography-Based Artificial Intelligence Computer-Aided Diagnosis on Synthetic Mammography From Digital Breast Tomosynthesis
Kyung Eun LEE ; Sung Eun SONG ; Kyu Ran CHO ; Min Sun BAE ; Bo Kyoung SEO ; Soo-Yeon KIM ; Ok Hee WOO
Korean Journal of Radiology 2025;26(3):217-229
Objective:
To test the performance of an artificial intelligence-based computer-aided diagnosis (AI-CAD) designed for fullfield digital mammography (FFDM) when applied to synthetic mammography (SM).
Materials and Methods:
We analyzed 501 women (mean age, 57 ± 11 years) who underwent preoperative mammography and breast cancer surgery. This cohort consisted of 1002 breasts, comprising 517 with cancer and 485 without. All patients underwent digital breast tomosynthesis (DBT) and FFDM during the preoperative workup. The SM is routinely reconstructed using DBT. Commercial AI-CAD (Lunit Insight MMG, version 1.1.7.2) was retrospectively applied to SM and FFDM to calculate the abnormality scores for each breast. The median abnormality scores were compared for the 517 breasts with cancer using the Wilcoxon signed-rank test. Calibration curves of abnormality scores were evaluated. The discrimination performance was analyzed using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity using a 10% preset threshold. Sensitivity and specificity were further analyzed according to the mammographic and pathological characteristics.The results of SM and FFDM were compared.
Results:
AI-CAD demonstrated a significantly lower median abnormality score (71% vs. 96%, P < 0.001) and poorer calibration performance for SM than for FFDM. SM exhibited lower sensitivity (76.2% vs. 82.8%, P < 0.001), higher specificity (95.5% vs.91.8%, P < 0.001), and comparable AUC (0.86 vs. 0.87, P = 0.127) than FFDM. SM showed lower sensitivity than FFDM in asymptomatic breasts, dense breasts, ductal carcinoma in situ, T1, N0, and hormone receptor-positive/human epidermal growth factor receptor 2-negative cancers but showed higher specificity in non-cancerous dense breasts.
Conclusion
AI-CAD showed lower abnormality scores and reduced calibration performance for SM than for FFDM.Furthermore, the 10% preset threshold resulted in different discrimination performances for the SM. Given these limitations, off-label application of the current AI-CAD to SM should be avoided.

Result Analysis
Print
Save
E-mail