1.Study on the mechanism of Wuzi-Yanzong-Wan-medicated serum interfering with the mitochondrial permeability transition pore in the GC-2 cell induced by atractyloside.
De-Ling WU ; Tong-Sheng WANG ; Hong-Juan LIU ; Wei ZHANG ; Xiao-Hui TONG ; Dai-Yin PENG ; Ling-Yi KONG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(4):282-289
Wuzi-Yanzong-Wan (WZYZW) is a classic prescription for male infertility. Our previous investigation has demonstrated that it can inhibit sperm apoptosis via affecting mitochondria, but the underlying mechanisms are unclear. The purpose of the present study was to explore the actions of WZYZW on mitochondrial permeability transition pore (mPTP) in mouse spermatocyte cell line (GC-2 cells) opened by atractyloside (ATR). At first, WZYZW-medicated serum was prepared from rats following oral administration of WZYZW for 7 days. GC-2 cells were divided into control group, model group, positive group, as well as 5%, 10%, 15% WZYZW-medicated serum group. Cyclosporine A (CsA) was used as a positive control. 50 μmol·L-1 ATR was added after drugs incubation. Cell viability was assessed using CCK-8. Apoptosis was detected using flow cytometry and TUNEL method. The opening of mPTP and mitochondrial membrane potential (MMP) were detected by Calcein AM and JC-1 fluorescent probe respectively. The mRNA and protein levels of voltage-dependent anion channel 1 (VDAC1), cyclophilin D (CypD), adenine nucleotide translocator (ANT), cytochrome C (Cyt C), caspase 3, 9 were detected by RT-PCR (real time quantity PCR) and Western blotting respectively. The results demonstrated that mPTP of GC-2 cells was opened after 24 hours of ATR treatment, resulting in decreased MMP and increased apoptosis. Pre-protection with WZYZ-medicated serum and CsA inhibited the opening of mPTP of GC-2 cells induced by ATR associated with increased MMP and decreased apoptosis. Moreover, the results of RT-qPCR and WB suggested that WZYZW-medicated serum could significantly reduce the mRNA and protein levels of VDAC1 and CypD, Caspase-3, 9 and CytC, as well as a increased ratio of Bcl/Bax. However, ANT was not significantly affected. Therefore, these findings indicated that WZYZW inhibited mitochondrial mediated apoptosis by attenuating the opening of mPTP in GC-2 cells. WZYZW-medicated serum inhibited the expressions of VDAC1 and CypD and increased the expression of Bcl-2, which affected the opening of mPTP and exerted protective and anti-apoptotic effects on GC-2 cell induced by ATR.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
Animals
;
Atractyloside/pharmacology*
;
Cyclophilin D
;
Male
;
Matrix Metalloproteinases
;
Mice
;
Mitochondrial Membrane Transport Proteins/metabolism*
;
Mitochondrial Permeability Transition Pore
;
RNA, Messenger
;
Rats
2.Prohibitin regulates mTOR pathway via interaction with FKBP8.
Jiahui ZHANG ; Yanan YIN ; Jiahui WANG ; Jingjing ZHANG ; Hua LIU ; Weiwei FENG ; Wen YANG ; Bruce ZETTER ; Yingjie XU
Frontiers of Medicine 2021;15(3):448-459
The ability of tumor cells to sustain continuous proliferation is one of the major characteristics of cancer. The activation of oncogenes and the mutation or inactivation of tumor suppressor genes ensure the rapid proliferation of tumor cells. The PI3K-Akt-mTOR axis is one of the most frequently modified signaling pathways whose activation sustains cancer growth. Unsurprisingly, it is also one of the most commonly attempted targets for cancer therapy. FK506 binding protein 8 (FKBP8) is an intrinsic inhibitor of mTOR kinase that also exerts an anti-apoptotic function. We aimed to explain these contradictory aspects of FKBP8 in cancer by identifying a "switch" type regulator. We identified through immunoprecipitation-mass spectrometry-based proteomic analysis that the mitochondrial protein prohibitin 1 (PHB1) specifically interacts with FKBP8. Furthermore, the downregulation of PHB1 inhibited the proliferation of ovarian cancer cells and the mTOR signaling pathway, whereas the FKBP8 level in the mitochondria was substantially reduced. Moreover, concomitant with these changes, the interaction between FKBP8 and mTOR substantially increased in the absence of PHB1. Collectively, our finding highlights PHB1 as a potential regulator of FKBP8 because of its subcellular localization and mTOR regulating role.
Apoptosis
;
Cell Line, Tumor
;
Cell Proliferation
;
Female
;
Humans
;
Ovarian Neoplasms
;
Phosphatidylinositol 3-Kinases
;
Proteomics
;
Repressor Proteins
;
TOR Serine-Threonine Kinases
;
Tacrolimus Binding Proteins
3.Expression of cyclophilin A in oral squamous cell carcinoma and its effect on cell proliferation and invasion.
Xiao-Yang XIA ; Fei FANG ; Yan LIU ; Chao CHE ; Jin-Juan KE ; Sheng-Jun JIANG
West China Journal of Stomatology 2021;39(2):164-169
OBJECTIVES:
To investigate the expression of cyclophilin A (CyPA) in oral squamous cell carcinoma (OSCC) and explore the effect of downregulating the expression of CyPA gene on the proliferation and invasion of SCC-25 cells.
METHODS:
A total of 77 cases of patients with OSCC were selected. The expression levels of CyPA proteins in OSCC and adjacent normal tissues were evaluated. SCC-25 cells were cultured and divided into the CyPA interference sequence group, negative control group, and blank group. The expression levels of CyPA mRNA and protein in cells were detected by using real-time fluorescent quantitative polymerase chain reaction and Western blot, respectively. Cell proliferation was detected by using methyl thiazolyl tetrazolium and plate colony formation assays. Cell invasion was detected by using Transwell assay.
RESULTS:
The positive expression rate of CyPA protein in OSCC tissues was 76.62%, which was higher than that in adjacent tissues (
CONCLUSIONS
The CyPA protein is highly expressed in OSCC tissues, and the downregulation of CyPA gene expression in SCC-25 cells can reduce cell proliferation and inhibit cell invasion.
Carcinoma, Squamous Cell/genetics*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Cyclophilin A/genetics*
;
Gene Expression Regulation, Neoplastic
;
Head and Neck Neoplasms
;
Humans
;
Mouth Neoplasms/genetics*
;
Squamous Cell Carcinoma of Head and Neck
4.Role of cyclophilin A during coronavirus replication and the antiviral activities of its inhibitors.
Lu TIAN ; Wenjun LIU ; Lei SUN
Chinese Journal of Biotechnology 2020;36(4):605-611
Cyclophilin A (CypA) is a widely distributed and highly conserved protein in organisms. It has peptidyl-prolyl cis/trans isomerase activity and is a receptor for cyclosporin A (CsA). Coronaviruses are enveloped, single-stranded, positive-sense RNA viruses. Seven types of coronaviruses are currently known to infect humans, among which SARS-CoV, MERS-CoV, and SARS-CoV-2 are fatal for humans. It is well established that CypA is essential for the replication of various coronaviruses such as SARS-CoV, CoV-229E, CoV-NL63, and FCoV. Additionally, CsA and its derivatives (ALV, NIM811, etc.) have obvious inhibitory effects on a variety of coronaviruses. These results suggest that CypA is a potential antiviral target and the existing drug CsA might be used as an anti-coronavirus drug. At the end of 2019, SARS-CoV-2 raged in China, which seriously theatern human health and causes huge economic lases. In view of this, we describe the effects of CypA on the replication of coronaviruses and the antiviral activities of its inhibitors, which will provide the scientific basis and ideas for the development of antiviral drugs for SARS-CoV-2.
Antiviral Agents
;
pharmacology
;
therapeutic use
;
Betacoronavirus
;
drug effects
;
growth & development
;
Coronavirus
;
drug effects
;
growth & development
;
Coronavirus Infections
;
drug therapy
;
epidemiology
;
virology
;
Cyclophilin A
;
antagonists & inhibitors
;
Cyclosporine
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Pandemics
;
Pneumonia, Viral
;
drug therapy
;
epidemiology
;
virology
;
SARS Virus
;
drug effects
;
growth & development
;
Virus Replication
;
drug effects
5.Protective Effect of Right Ventricular Mitochondrial Damage by Cyclosporine A in Monocrotaline-induced Pulmonary Hypertension
Dong Seok LEE ; Yong Wook JUNG
Korean Circulation Journal 2018;48(12):1135-1144
BACKGROUND AND OBJECTIVES: Mitochondria play a key role in the pathophysiology of heart failure and mitochondrial permeability transition pore (MPTP) play a critical role in cell death and a critical target for cardioprotection. The aim of this study was to evaluate the protective effects of cyclosporine A (CsA), one of MPTP blockers, and morphological changes of mitochondria and MPTP related proteins in monocrotaline (MCT) induced pulmonary arterial hypertension (PAH). METHODS: Eight weeks old Sprague-Dawley rats were randomized to control, MCT (60 mg/kg) and MCT plus CsA (10 mg/kg/day) treatment groups. Four weeks later, right ventricular hypertrophy (RVH) and morphological changes of right ventricle (RV) were done. Western blot and reverse transcription polymerase chain reaction (RT-PCR) for MPTP related protein were performed. RESULTS: In electron microscopy, CsA treatment prevented MCT-induced mitochondrial disruption of RV. RVH was significantly increased in MCT group compared to that of the controls but RVH was more increased with CsA treatment. Thickened medial wall thickness of pulmonary arteriole in PAH was not changed after CsA treatment. In western blot, caspase-3 was significantly increased in MCT group, and was attenuated in CsA treatment. There were no significant differences in voltage-dependent anion channel, adenine nucleotide translocator 1 and cyclophilin D expression in western blot and RT-PCR between the 3 groups. CONCLUSIONS: CsA reduces MCT induced RV mitochondrial damage. Although, MPTP blocking does not reverse pulmonary pathology, it may reduce RV dysfunction in PAH. The results suggest that it could serve as an adjunctive therapy to PAH treatment.
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
;
Adenine Nucleotide Translocator 1
;
Arterioles
;
Blotting, Western
;
Caspase 3
;
Cell Death
;
Cyclophilins
;
Cyclosporine
;
Heart Failure
;
Heart Ventricles
;
Hypertension
;
Hypertension, Pulmonary
;
Hypertrophy, Right Ventricular
;
Microscopy, Electron
;
Mitochondria
;
Monocrotaline
;
Pathology
;
Permeability
;
Polymerase Chain Reaction
;
Pulmonary Circulation
;
Rats, Sprague-Dawley
;
Reverse Transcription
6.The Future of B-cell Activating Factor Antagonists in the Treatment of Systemic Lupus Erythematosus.
Journal of Rheumatic Diseases 2017;24(2):65-73
To review B-cell activating factor (BAFF)-antagonist therapy in systemic lupus erythematosus (SLE), literature was searched using the search words and phrases, “BAFF”, “B lymphocyte stimulator (BLyS)”, “a proliferation-inducing ligand (APRIL)”, “B-cell maturation antigen (BCMA)”, “transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI)”, “BLyS receptor 3 (BR3)”, “belimumab”, “atacicept”, “blisibimod”, “tabalumab”, and “lupus clinical trial”. In addition, papers from the author's personal library were searched. BAFF-antagonist therapy in SLE has a checkered past, with four late-stage clinical trials meeting their primary endpoints and four failing to do so. Additional late-stage clinical trials are enrolling subjects to address some of the remaining unresolved questions, and novel approaches are proposed to improve results. The BAFF-centric pathway is a proven therapeutic target in SLE. As the only pathway in the past 50+ years to have yielded an United States Food and Drug Administration-approved drug for SLE, it occupies a unique place in the armamentarium of the practicing rheumatologist. The challenges facing clinicians and investigators are how to better tweak the BAFF-centric pathway and improve on the successes realized.
B-Cell Activating Factor*
;
B-Lymphocytes*
;
Cyclophilins
;
Humans
;
Lupus Erythematosus, Systemic*
;
Lymphocytes
;
Research Personnel
;
United States
7.The Future of B-cell Activating Factor Antagonists in the Treatment of Systemic Lupus Erythematosus.
Journal of Rheumatic Diseases 2017;24(2):65-73
To review B-cell activating factor (BAFF)-antagonist therapy in systemic lupus erythematosus (SLE), literature was searched using the search words and phrases, “BAFF”, “B lymphocyte stimulator (BLyS)”, “a proliferation-inducing ligand (APRIL)”, “B-cell maturation antigen (BCMA)”, “transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI)”, “BLyS receptor 3 (BR3)”, “belimumab”, “atacicept”, “blisibimod”, “tabalumab”, and “lupus clinical trial”. In addition, papers from the author's personal library were searched. BAFF-antagonist therapy in SLE has a checkered past, with four late-stage clinical trials meeting their primary endpoints and four failing to do so. Additional late-stage clinical trials are enrolling subjects to address some of the remaining unresolved questions, and novel approaches are proposed to improve results. The BAFF-centric pathway is a proven therapeutic target in SLE. As the only pathway in the past 50+ years to have yielded an United States Food and Drug Administration-approved drug for SLE, it occupies a unique place in the armamentarium of the practicing rheumatologist. The challenges facing clinicians and investigators are how to better tweak the BAFF-centric pathway and improve on the successes realized.
B-Cell Activating Factor*
;
B-Lymphocytes*
;
Cyclophilins
;
Humans
;
Lupus Erythematosus, Systemic*
;
Lymphocytes
;
Research Personnel
;
United States
8.A FKBP5 mutation is associated with Paget's disease of bone and enhances osteoclastogenesis.
Bingru LU ; Yulian JIAO ; Yinchang WANG ; Jing DONG ; Muyun WEI ; Bin CUI ; Yafang SUN ; Laicheng WANG ; Bingchang ZHANG ; Zijiang CHEN ; Yueran ZHAO
Experimental & Molecular Medicine 2017;49(5):e336-
Paget's disease of bone (PDB) is a common metabolic bone disease that is characterized by aberrant focal bone remodeling, which is caused by excessive osteoclastic bone resorption followed by disorganized osteoblastic bone formation. Genetic factors are a critical determinant of PDB pathogenesis, and several susceptibility genes and loci have been reported, including SQSTM1, TNFSF11A, TNFRSF11B, VCP, OPTN, CSF1 and DCSTAMP. Herein, we report a case of Chinese familial PDB without mutations in known genes and identify a novel c.163G>C (p.Val55Leu) mutation in FKBP5 (encodes FK506-binding protein 51, FKBP51) associated with PDB using whole-exome sequencing. Mutant FKBP51 enhanced the Akt phosphorylation and kinase activity in cells. A study of osteoclast function using FKBP51V55L KI transgenic mice proved that osteoclast precursors from FKBP51V55L mice were hyperresponsive to RANKL, and osteoclasts derived from FKBP51V55L mice displayed more intensive bone resorbing activity than did FKBP51WT controls. The osteoclast-specific molecules tartrate-resistant acid phosphatase, osteoclast-associated receptor and transcription factor NFATC1 were increased in bone marrow-derived monocyte/macrophage cells (BMMs) from FKBP51V55L mice during osteoclast differentiation. However, c-fos expression showed no significant difference in the wild-type and mutant groups. Akt phosphorylation in FKBP51V55L BMMs was elevated in response to RANKL. In contrast, IκB degradation, ERK phosphorylation and LC3II expression showed no difference in wild-type and mutant BMMs. Micro-CT analysis revealed an intensive trabecular bone resorption pattern in FKBP51V55L mice, and suspicious osteolytic bone lesions were noted in three-dimensional reconstruction of distal femurs from mutant mice. These results demonstrate that the mutant FKBP51V55L promotes osteoclastogenesis and function, which could subsequently participate in PDB development.
Acid Phosphatase
;
Animals
;
Asian Continental Ancestry Group
;
Bone Diseases, Metabolic
;
Bone Remodeling
;
Bone Resorption
;
Femur
;
Humans
;
Mice
;
Mice, Transgenic
;
Osteitis Deformans*
;
Osteoblasts
;
Osteoclasts
;
Osteogenesis
;
Phosphorylation
;
Phosphotransferases
;
Tacrolimus Binding Proteins
;
Transcription Factors
9.Expression of cyclophilin A/CD147 in carotid atherosclerotic plaque and the intervention of atorvastatin.
Juhua GAO ; Xiaoping GAO ; Zhihong ZHAO ; Suyue PAN
Journal of Central South University(Medical Sciences) 2016;41(5):482-488
OBJECTIVE:
To explore the expression of CyPA and CD147 in rabbit models of vulnerable carotid atherosclerotic plaque and the therapeutic effect of atorvastatin.
METHODS:
Twenty-four male New Zealand rabbits were randomly divided into 3 groups. Eight rabbits were served as a normal diet group (Group A), and the remaining 16 rabbits underwent balloon-induced endothelial injury in the right carotid artery and thereafter were fed on high-cholesterol diet (1% cholesterol) for 12 weeks, then they were divided into 2 groups: a AS group (Group B), an atorvastatin group [Group C, 2.5 mg/(kg.d)]. 4 weeks later, plaque disrupture was triggered by China Russell's viper venom and histamine. Serum levels of TC, TG, LDL-C and HDL-C were measured at different timepoint. The damaged carotid arteries were collected to undergo pathological examination. The macrophage, expression of CyPA and CD147 were detected by immuno-histochemical analysis, and the mRNA levels of CyPA and CD147 were examined by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS:
Compared with the Group A, the serum levels of TC and LDL-c in the Group B and Group C were significantly increased (all P<0.01). Compared with the Group B, the serum levels of TC and LDL-c in the Group C were reduced significantly after atorvastatin intervention for 4 weeks (all P<0.01). The plaques disruption and thrombosis occurred in 4 out of the 6 rabbits in the Group B, while only 1 rabbit demonstrated plaques disruption and thrombosis in the Group C. Compared with the Group B, the levels of CyPA, CD147 and macrophage in carotid atherosclerotic plaque in the Group C were decreased significantly (all P<0.01).
CONCLUSION
The up-regulation of CyPA and CD147 may be involved in pathogenesis of vulnerable carotid atherosclerotic plaque. Atorvastatin could stabilize the plaque through inhibiting the CyPA and CD147 expression.
Animals
;
Atorvastatin
;
pharmacology
;
Basigin
;
metabolism
;
Carotid Artery, Common
;
pathology
;
Cholesterol
;
blood
;
Cholesterol, Dietary
;
administration & dosage
;
Cyclophilin A
;
metabolism
;
Macrophages
;
cytology
;
Male
;
Plaque, Atherosclerotic
;
drug therapy
;
metabolism
;
Rabbits
;
Random Allocation
;
Thrombosis
;
pathology
;
Triglycerides
;
blood
10.CyPA-CD147-ERK1/2-cyclin D2 signaling pathway is upregulated during rat left ventricular hypertrophy.
Fu-Cai TANG ; Hong-Yan WANG ; Ming-Ming MA ; Tian-Wang GUAN ; Long PAN ; Dun-Chen YAO ; Ya-Lan CHEN ; Wei-Bei CHEN ; Yong-Sheng TU ; Xiao-Dong FU
Acta Physiologica Sinica 2015;67(4):393-400
The changes of serum cyclophilin A (CyPA), its receptor CD147 and the downstream signaling pathway during the process of cardiac hypertrophy remain unknown. The present study aims to investigate the relationships between CyPA-CD147-ERK1/2-cyclin D2 signaling pathway and the development of cardiac hypertrophy. Left ventricular hypertrophy was prepared by 2-kidney, 2-clip in Sprague-Dawley rats and observed for 1 week, 4 and 8 weeks. Left ventricular hypertrophy was evaluated by ratio of left ventricular heart weight to body weight (LVW/BW) and cardiomyocyte cross sectional area (CSA). CyPA levels in serum were determined with a rat CyPA ELISA kit. Expressions of CyPA, CD147, phospho-ERK1/2 and cyclin D2 in left ventricular myocytes were determined by Western blot and immunostaining. Compared with sham groups, systolic blood pressure reached hypertensive levels at 4 weeks in 2K2C groups. LVW/BW and CSA in 2K2C groups were significantly increased at 4 and 8 weeks after clipping. ELISA results indicated a prominent increase in serum CyPA level associated with the degree of left ventricular hypertrophy. Western blot revealed that the expressions of CyPA, CD147, phospho-ERK1/2 and cyclin D2 in left ventricular tissues were also remarkably increased as the cardiac hypertrophy developed. The results of the present study demonstrates that serum CyPA and CyPA-CD147-ERK1/2-cyclin D2 signaling pathway in ventricular tissues are time-dependently upregulated and activated with the process of left ventricular hypertrophy. These data suggest that CyPA-CD147 signaling cascade might play a role in the pathogenesis of left ventricular hypertrophy, and CyPA might be a prognosticator of the degree of left ventricular hypertrophy.
Animals
;
Basigin
;
metabolism
;
Blood Pressure
;
Cyclin D2
;
Cyclophilin A
;
metabolism
;
Hypertension
;
Hypertrophy, Left Ventricular
;
metabolism
;
Mitogen-Activated Protein Kinase 1
;
metabolism
;
Mitogen-Activated Protein Kinase 3
;
metabolism
;
Myocytes, Cardiac
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Up-Regulation

Result Analysis
Print
Save
E-mail