1.Biomechanical properties of epithelial mesenchymal transition in idiopathic pulmonary fibrosis.
Mingyan LI ; Meihao SUN ; Yuanbo JIA ; Hui REN ; Han LIU
Journal of Biomedical Engineering 2023;40(4):632-637
Idiopathic pulmonary fibrosis (IPF) is a progressive scar-forming disease with a high mortality rate that has received widespread attention. Epithelial mesenchymal transition (EMT) is an important part of the pulmonary fibrosis process, and changes in the biomechanical properties of lung tissue have an important impact on it. In this paper, we summarize the changes in the biomechanical microenvironment of lung tissue in IPF-EMT in recent years, and provide a systematic review on the effects of alterations in the mechanical microenvironment in pulmonary fibrosis on the process of EMT, the effects of mechanical factors on the behavior of alveolar epithelial cells in EMT and the biomechanical signaling in EMT, in order to provide new references for the research on the prevention and treatment of IPF.
Humans
;
Epithelial-Mesenchymal Transition
;
Idiopathic Pulmonary Fibrosis
;
Signal Transduction
2.Identification of SULF1 as a Shared Gene in Idiopathic Pulmonary Fibrosis and Lung Adenocarcinoma.
Junyi WANG ; Lu LU ; Xiang HE ; Lijuan MA ; Tao CHEN ; Guoping LI ; Haijie YU
Chinese Journal of Lung Cancer 2023;26(9):669-683
BACKGROUND:
Idiopathic pulmonary fibrosis (IPF) is an idiopathic chronic, progressive interstitial lung disease with a diagnosed median survival of 3-5 years. IPF is associated with an increased risk of lung cancer. Therefore, exploring the shared pathogenic genes and molecular pathways between IPF and lung adenocarcinoma (LUAD) holds significant importance for the development of novel therapeutic approaches and personalized precision treatment strategies for IPF combined with lung cancer.
METHODS:
Bioinformatics analysis was conducted using publicly available gene expression datasets of IPF and LUAD from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis was employed to identify common genes involved in the progression of both diseases, followed by functional enrichment analysis. Subsequently, additional datasets were used to pinpoint the core shared genes between the two diseases. The relationship between core shared genes and prognosis, as well as their expression patterns, clinical relevance, genetic characteristics, and immune-related functions in LUAD, were analyzed using The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing datasets. Finally, potential therapeutic drugs related to the identified genes were screened through drug databases.
RESULTS:
A total of 529 shared genes between IPF and LUAD were identified. Among them, SULF1 emerged as a core shared gene associated with poor prognosis. It exhibited significantly elevated expression levels in LUAD tissues, concomitant with high mutation rates, genomic heterogeneity, and an immunosuppressive microenvironment. Subsequent single-cell RNA-seq analysis revealed that the high expression of SULF1 primarily originated from tumor-associated fibroblasts. This study further demonstrated an association between SULF1 expression and tumor drug sensitivity, and it identified potential small-molecule drugs targeting SULF1 highly expressed fibroblasts.
CONCLUSIONS
This study identified a set of shared molecular pathways and core genes between IPF and LUAD. Notably, SULF1 may serve as a potential immune-related biomarker and therapeutic target for both diseases.
Humans
;
Lung Neoplasms/genetics*
;
Adenocarcinoma of Lung/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
Adenocarcinoma
;
Cancer-Associated Fibroblasts
;
Prognosis
;
Tumor Microenvironment
;
Sulfotransferases
3.Research progress on the role and mechanism of 5-hydroxytryptamine and M2 macrophages in pulmonary interstitial fibrosis.
Yiming DENG ; Changwen DENG ; Xiaoping ZHU
Chinese Critical Care Medicine 2023;35(9):1004-1008
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease, the cause is not yet clear. Pathological manifestations are abnormal repair changes resulting from sustained lung injury. Macrophages have been identified as playing a key role in IPF pathogenesis. In different local microenvironments, macrophages can exhibit either classically activated (M1) or alternately activated (M2) phenotypes. M1 plays a key role in promoting inflammatory response and is involved in the process of causing alveolar tissue injury. M2 is involved in wound healing and stopping lung inflammation. Previous studies have shown that activation of 5-hydroxytryptamine (5-HT) signaling is enhanced in pulmonary fibrosis and that 5-HT receptors play an important role in the observed pro-fibrotic effects. As a multifunctional signaling molecule, 5-HT is closely related to lung macrophage polarization, early lung tissue injury, abnormal proliferation and repair, and late extracellular matrix (ECM) deposition. This article reviewed the role of 5-HT and M2 macrophages in the pathogenesis of IPF and the possible regulatory mechanism of 5-HT, in order to provide a reference for further research.
Humans
;
Serotonin
;
Macrophages
;
Lung Diseases, Interstitial/pathology*
;
Lung/pathology*
;
Idiopathic Pulmonary Fibrosis
;
Fibrosis
4.Efficacy and safety of Kangxian Huanji Granule as adjunctive treatment in acute exacerbation of idiopathic pulmonary fibrosis: An exploratory randomized controlled trial.
Jian-Sheng LI ; Hai-Long ZHANG ; Wen GUO ; Lu WANG ; Dong ZHANG ; Li-Min ZHAO ; Miao ZHOU
Journal of Integrative Medicine 2023;21(6):543-549
BACKGROUND:
Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) is an important occurrence in the natural history of idiopathic pulmonary fibrosis (IPF), associated with high hospitalization rates, high mortality and poor prognosis. At present, there is no effective treatment for AE-IPF. Chinese herbal medicine has some advantages in treating IPF, but its utility in AE-IPF is unclear.
OBJECTIVE:
The treatment of AE-IPF with Kangxian Huanji Granule (KXHJ), a compound Chinese herbal medicine, lacks an evidence-based justification. This study explores the efficacy and safety of KXHJ in patients with AE-IPF.
DESIGN, SETTING, PARTICIPANTS AND INTERVENTIONS:
We designed a randomized, double-blind, placebo-controlled, exploratory clinical trial. A total of 80 participants diagnosed with AE-IPF were randomly assigned to receive KXHJ or a matching placebo; the treatment included a 10 g dose, administered twice daily for 4 weeks, in addition to conventional treatment. Participants were followed up for 12 weeks after the treatment.
MAIN OUTCOME MEASURES:
The primary endpoints were treatment failure rate and all-cause mortality. Secondary endpoints included the length of hospitalization, overall survival, acute exacerbation rate, intubation rate, the modified British Medical Research Council (mMRC) score, and the St George's Respiratory Questionnaire for IPF (SGRQ-I) score.
RESULTS:
The rate of treatment failure at 4 weeks was lower in the intervention group compared to the control group (risk ratio [RR]: 0.22; 95% confidence interval [CI]: 0.051 to 0.965, P = 0.023). There was no significant difference in all-cause mortality at 16 weeks (RR: 0.75; 95% CI: 0.179 to 3.138; P > 0.999) or in the acute exacerbation rate during the 12-week follow-up period (RR: 0.69; 95% CI: 0.334 to 1.434; P = 0.317). The intervention group had a shorter length of hospitalization than the control group (mean difference [MD]: -3.30 days; 95% CI, -6.300 to -0.300; P = 0.032). Significant differences in the mean change from baseline in the mMRC (between-group difference: -0.67; 95% CI: -0.89 to -0.44; P < 0.001) and SGRQ-I score (between-group difference: -10.36; 95% CI: -16.483 to -4.228; P = 0.001) were observed after 4 weeks, and also in the mMRC (between-group difference: -0.67; 95% CI: -0.91 to -0.43; P < 0.001) and SGRQ-I (between-group difference: -10.28; 95% CI, -15.838 to -4.718; P < 0.001) at 16 weeks. The difference in the adverse events was not significant.
CONCLUSION:
KXHJ appears to be effective and safe for AE-IPF and can be considered a complementary treatment in patients with AE-IPF. As a preliminary exploratory study, our results provide a basis for further clinical research.
TRIAL REGISTRATION
Chinese Clinical Trial Registry (ChiCTR1900026289). Please cite this article as: Li JS, Zhang HL, Guo W, Wang L, Zhang D, Zhao LM, Zhou M. Efficacy and safety of Kangxian Huanji Granule as adjunctive treatment in acute exacerbation of idiopathic pulmonary fibrosis: an exploratory randomized controlled trial. J Integr Med. 2023; 21(6): 543-549.
Humans
;
Double-Blind Method
;
Drugs, Chinese Herbal/therapeutic use*
;
Idiopathic Pulmonary Fibrosis/drug therapy*
;
Treatment Outcome
6.Potential biomarkers for diagnosis and disease evaluation of idiopathic pulmonary fibrosis.
Qing WANG ; Zhaoliang XIE ; Nansheng WAN ; Lei YANG ; Zhixian JIN ; Fang JIN ; Zhaoming HUANG ; Min CHEN ; Huiming WANG ; Jing FENG
Chinese Medical Journal 2023;136(11):1278-1290
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease characterized by progressive lung fibrogenesis and histological features of usual interstitial pneumonia. IPF has a poor prognosis and presents a spectrum of disease courses ranging from slow evolving disease to rapid deterioration; thus, a differential diagnosis remains challenging. Several biomarkers have been identified to achieve a differential diagnosis; however, comprehensive reviews are lacking. This review summarizes over 100 biomarkers which can be divided into six categories according to their functions: differentially expressed biomarkers in the IPF compared to healthy controls; biomarkers distinguishing IPF from other types of interstitial lung disease; biomarkers differentiating acute exacerbation of IPF from stable disease; biomarkers predicting disease progression; biomarkers related to disease severity; and biomarkers related to treatment. Specimen used for the diagnosis of IPF included serum, bronchoalveolar lavage fluid, lung tissue, and sputum. IPF-specific biomarkers are of great clinical value for the differential diagnosis of IPF. Currently, the physiological measurements used to evaluate the occurrence of acute exacerbation, disease progression, and disease severity have limitations. Combining physiological measurements with biomarkers may increase the accuracy and sensitivity of diagnosis and disease evaluation of IPF. Most biomarkers described in this review are not routinely used in clinical practice. Future large-scale multicenter studies are required to design and validate suitable biomarker panels that have diagnostic utility for IPF.
Humans
;
Idiopathic Pulmonary Fibrosis/diagnosis*
;
Biomarkers
;
Lung Diseases, Interstitial
;
Lung
;
Bronchoalveolar Lavage Fluid
;
Disease Progression
;
Prognosis
7.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
8.Association between chronic lung diseases and the risk of lung cancer in UK Biobank: observational and Mendelian randomization analyses.
Jing ZHANG ; Zhi Min MA ; Hui WANG ; Ya Ting FU ; Chen JI ; Meng ZHU ; Hong Bing SHEN ; Hong Xia MA
Chinese Journal of Preventive Medicine 2023;57(8):1147-1152
Objective: To investigate the association between chronic lung diseases and the risk of lung cancer. Methods: Using UK Biobank (UKB) survey data, 472 397 participants who had not previously been diagnosed with cancer and whose self-reported sex was consistent with their genetic sex were studied. Information on the prevalence of previous chronic lung diseases, general demographic characteristics and the prevalence of lung cancer was collected using baseline questionnaires and national health system data. The multivariate Cox proportional risk regression model was used to analyze the association between four previous chronic lung diseases (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and interstitial pulmonary disease) and the risk of lung cancer. A total of 458 526 participants with genotype data in the observational study were selected as research objects, and the closely related and independent genetic loci with four chronic lung diseases were selected as instrumental variables, and the association between four chronic lung diseases and the risk of lung cancer was analyzed by Mendelian randomization (MR). The dose-response relationship between genetic risk score and the risk of lung cancer in different chronic lung diseases was evaluated using a restricted cubic spline function. Results: The age [M (Q1, Q3)] of the subjects was 57 (50, 63) years old, and there were 3 516 new cases of lung cancer (0.74%) during follow-up. The multivariate Cox proportional hazard regression model analysis showed that previous chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, about 1.61 (1.49-1.75) and 2.61 (1.24-5.49), respectively. MR Studies showed that genetically predicted chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis were associated with the risk of lung cancer, with HR (95%CI) of 1.10 (1.03-1.19) and 1.04 (1.01-1.08), respectively. The results of restricted cubic spline function analysis showed that the risk of lung cancer increased linearly with the increase of genetic risk scores for chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (P<0.05). Neither observational studies nor Mendelian randomization analysis found an association between previous asthma or interstitial lung disease and the risk of lung cancer (both P values>0.05). Conclusion: Chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis are potential risk factors for lung cancer.
Humans
;
Middle Aged
;
Mendelian Randomization Analysis
;
Biological Specimen Banks
;
Lung Neoplasms/genetics*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Asthma/genetics*
;
Idiopathic Pulmonary Fibrosis/genetics*
;
United Kingdom/epidemiology*
;
Genome-Wide Association Study
9.Successful Rescue of Acute Exacerbation of Idiopathic Pulmonary Fibrosis after Surgery for Lung Cancer: Case Report.
Chuan HUANG ; Qingjun WU ; Chao MA ; Peng JIAO ; Yaoguang SUN ; Hongfeng TONG
Chinese Journal of Lung Cancer 2022;25(5):358-362
Idiopathic Pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease with unknown cause, which is closely related to lung cancer. A serious complication called Acute exacerbation of IPF (AE-IPF) is prone to occur after lung resection. It progresses rapidly without effective treatment and has a poor prognosis. A typical case of AE-IPF after lung cancer surgery was reported, and its clinical characteristics, imaging features, diagnosis and treatment were summarized.
.
Disease Progression
;
Humans
;
Idiopathic Pulmonary Fibrosis/surgery*
;
Lung Neoplasms/surgery*
;
Treatment Outcome
10.Efficacy of Qingfei oral liquid for idiopathic pulmonary fibrosis in rats and related network pharmacology study.
Yiwen ZHANG ; Kongsheng SHENG ; Feifeng SONG ; Zongfu PAN ; Xiaozhou ZOU ; Yujia LIU ; Ping HUANG
Journal of Zhejiang University. Medical sciences 2022;51(1):53-61
To investigate the therapeutic effect and mechanism of Qingfei oral liquid in idiopathic pulmonary fibrosis. Seventy-two male SD rats were divided into control group, model group, pirofenidone group and Qingfei group with 18 animals in each group. The idiopathic pulmonary fibrosis was induced in last three groups by intratracheal injection of bleomycin; pirofenidone group was given oral administration of pirofenidone b.i.d for 21 d, and Qingfei group was given Qingfei oral liquid 3.6 mL/kg q.d for Lung tissues were obtained for HE staining, Masson staining and transforming growth factor (TGF)-β immunohistochemical staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were detected in tissue homogenates. The BATMAN-TCM database was used to retrieve the chemical components and their corresponding targets of Qingfei oral solution by network pharmacology method, and then the component-target-disease network diagram was constructed. Finally, the pathway enrichment analysis was carried out to explore the molecular mechanism of Qingfei oral liquid against idiopathic fibrosis. Histopathology results showed that Qingfei oral liquid had a similar relieving effect on pulmonary fibrosis as the positive drug pirfenidone; TGF-β secretion had a significant reduction in lung tissues of Qingfei group; and Qingfei oral liquid had better regulatory effect on SOD, MDA and GSH than pirfenidone. The results of component-target-disease network and pathway enrichment analysis showed that the related molecular pathways were concentrated in inflammation, extracellular matrix and cytokines. Qingfei oral liquid has a good therapeutic effect on idiopathic pulmonary fibrosis in rats via regulation of inflammation, extracellular matrix and cytokines.
Animals
;
Bleomycin/pharmacology*
;
Cytokines
;
Drugs, Chinese Herbal
;
Glutathione
;
Idiopathic Pulmonary Fibrosis/drug therapy*
;
Inflammation
;
Lung/pathology*
;
Male
;
Network Pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Superoxide Dismutase/metabolism*
;
Transforming Growth Factor beta/pharmacology*

Result Analysis
Print
Save
E-mail