1.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
2.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
3.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
4.Erratum: Correction of Text in the Article “The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)”
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2025;55(3):256-257
5.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
6.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
7.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
8.The Long-term Outcomes and Risk Factors of Complications After Fontan Surgery: From the Korean Fontan Registry (KFR)
Sang-Yun LEE ; Soo-Jin KIM ; Chang-Ha LEE ; Chun Soo PARK ; Eun Seok CHOI ; Hoon KO ; Hyo Soon AN ; I Seok KANG ; Ja Kyoung YOON ; Jae Suk BAEK ; Jae Young LEE ; Jinyoung SONG ; Joowon LEE ; June HUH ; Kyung-Jin AHN ; Se Yong JUNG ; Seul Gi CHA ; Yeo Hyang KIM ; Youngseok LEE ; Sanghoon CHO
Korean Circulation Journal 2024;54(10):653-668
Background and Objectives:
This study aimed to analyze the outcomes of Fontan surgery in the Republic of Korea, as there were only a few studies from Asian countries.
Methods:
The medical records of 1,732 patients who underwent Fontan surgery in 10 cardiac centers were reviewed.
Results:
Among them, 1,040 (58.8%) were men. The mean age at Fontan surgery was 4.3±4.2 years, and 395 (22.8%) patients presented with heterotaxy syndrome. According to the types of Fontan surgery, 157 patients underwent atriopulmonary (AP) type; 303, lateral tunnel (LT) type; and 1,266, extracardiac conduit (ECC) type. The overall survival rates were 91.7%, 87.1%, and 74.4% at 10, 20, and 30 years, respectively. The risk factors of early mortality were male, heterotaxy syndrome, AP-type Fontan surgery, high mean pulmonary artery pressure (mPAP) in pre-Fontan cardiac catheterization, and early Fontan surgery year. The risk factors of late mortality were heterotaxy syndrome, genetic disorder, significant atrioventricular valve regurgitation (AVVR) before Fontan surgery, high mPAP in pre-Fontan cardiac catheterization, and no fenestration.
Conclusions
In Asian population with a high incidence of heterotaxy syndrome, the heterotaxy syndrome was identified as the poor prognostic factors for Fontan surgery. The preoperative low mPAP and less AVVR are associated with better early and long-term outcomes of Fontan surgery.
10.Downregulation of Heat Shock Protein 72 Contributes to Fibrostenosis in Crohn’s Disease
Seung Won KIM ; Jae-Young LEE ; Han Cheol LEE ; Jae Bum AHN ; Ji Hyung KIM ; I Seul PARK ; Jae Hee CHEON ; Duk Hwan KIM
Gut and Liver 2023;17(6):905-915
Background/Aims:
Crohn’s disease (CD) with recurrent inflammation can cause intestinal fibrostenosis due to dysregulated deposition of extracellular matrix. However, little is known about the pathogenesis of fibrostenosis. Here, we performed a differential proteomic analysis between normal, inflamed, and fibrostenotic specimens of patients with CD and investigated the roles of the candidate proteins in myofibroblast activation and fibrosis.
Methods:
We performed two-dimensional difference gel electrophoresis and identified candidate proteins using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and orbitrap liquid chromatography-mass spectrometry. We also verified the levels of candidate proteins in clinical specimens and examined their effects on 18Co myofibroblasts and Caco-2 intestinal epithelial cells.
Results:
We identified five of 30 proteins (HSP72, HSPA5, KRT8, PEPCK-M, and FABP6) differentially expressed in fibrostenotic CD. Among these proteins, the knockdown of heat shock protein 72 (HSP72) promoted the activation and wound healing of myofibroblasts. Moreover, knockdown of HSP72 induced the epithelial-mesenchymal transition of intestinal epithelial cells by reducing E-cadherin and inducing fibronectin and α-smooth muscle actin, which contribute tofibrosis.
Conclusions
HSP72 is an important mediator that regulates myofibroblasts and epithelial-mesenchymal transition in fibrosis of CD, suggesting that HSP72 can serve as a target for antifibrotic therapy.

Result Analysis
Print
Save
E-mail