1.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
2.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
3.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
4.The impact of severe depression on the survival of older patients with end-stage kidney disease
You Hyun JEON ; Jeong-Hoon LIM ; Yena JEON ; Yu-Kyung CHUNG ; Yon Su KIM ; Shin-Wook KANG ; Chul Woo YANG ; Nam-Ho KIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Jang-Hee CHO
Kidney Research and Clinical Practice 2024;43(6):818-828
Incidence of depression increases in patients with end-stage kidney disease (ESKD). We evaluated the association between depression and mortality among older patients with ESKD, which has not been studied previously. Methods: This nationwide prospective cohort study included 487 patients with ESKD aged >65 years, who were categorized into minimal, mild-to-moderate, and severe depression groups based on their Beck Depression Inventory-II (BDI-II) scores. Predisposing factors for high BDI-II scores and the association between the scores and survival were analyzed. Results: The severe depression group showed a higher modified Charlson comorbidity index value and lower serum albumin, phosphate, and uric acid levels than the other depression groups. The Kaplan-Meier curve revealed a significantly lower survival in the severe depression group than in the minimal and mild-to-moderate depression groups (p = 0.011). Multivariate Cox regression analysis confirmed that severe depression was an independent risk factor for mortality in the study cohort (hazard ratio, 1.39; 95% confidence interval, 1.01–1.91; p = 0.041). Additionally, BDI-II scores were associated with modified Charlson comorbidity index (p = 0.009) and serum albumin level (p = 0.004) in multivariate linear regression. Among the three depressive symptoms, higher somatic symptom scores were associated with increased mortality. Conclusion: Severe depression among older patients with ESKD increases mortality compared with minimal or mild-to-moderate depression, and patients with concomitant somatic symptoms require careful management of their comorbidities and nutritional status.
5.The impact of severe depression on the survival of older patients with end-stage kidney disease
You Hyun JEON ; Jeong-Hoon LIM ; Yena JEON ; Yu-Kyung CHUNG ; Yon Su KIM ; Shin-Wook KANG ; Chul Woo YANG ; Nam-Ho KIM ; Hee-Yeon JUNG ; Ji-Young CHOI ; Sun-Hee PARK ; Chan-Duck KIM ; Yong-Lim KIM ; Jang-Hee CHO
Kidney Research and Clinical Practice 2024;43(6):818-828
Incidence of depression increases in patients with end-stage kidney disease (ESKD). We evaluated the association between depression and mortality among older patients with ESKD, which has not been studied previously. Methods: This nationwide prospective cohort study included 487 patients with ESKD aged >65 years, who were categorized into minimal, mild-to-moderate, and severe depression groups based on their Beck Depression Inventory-II (BDI-II) scores. Predisposing factors for high BDI-II scores and the association between the scores and survival were analyzed. Results: The severe depression group showed a higher modified Charlson comorbidity index value and lower serum albumin, phosphate, and uric acid levels than the other depression groups. The Kaplan-Meier curve revealed a significantly lower survival in the severe depression group than in the minimal and mild-to-moderate depression groups (p = 0.011). Multivariate Cox regression analysis confirmed that severe depression was an independent risk factor for mortality in the study cohort (hazard ratio, 1.39; 95% confidence interval, 1.01–1.91; p = 0.041). Additionally, BDI-II scores were associated with modified Charlson comorbidity index (p = 0.009) and serum albumin level (p = 0.004) in multivariate linear regression. Among the three depressive symptoms, higher somatic symptom scores were associated with increased mortality. Conclusion: Severe depression among older patients with ESKD increases mortality compared with minimal or mild-to-moderate depression, and patients with concomitant somatic symptoms require careful management of their comorbidities and nutritional status.
6.Autotransplantation in Pediatric Dentistry: Factors Affecting Treatment Outcomes
Sungjoon CHUNG ; Hyuntae KIM ; Ji-Soo SONG ; Teo Jeon SHIN ; Hong-Keun HYUN ; Young-Jae KIM ; Jung-Wook KIM ; Ki-Taeg JANG
Journal of Korean Academy of Pediatric Dentistry 2024;51(3):245-264
This research aimed to evaluate the outcomes of autotransplantation in both children and adolescents, with a focus on root growth, and determine the clinical and radiographic factors associated with the success rate. In this study, 73 teeth, autogenously transplanted in 63 patients, were examined over an observation period of 3.2 years on average. The mean age at the time of autotransplantation was 11.9 years. Based on the radiographic criteria, the success rate was 73.97% and the survival rate was 100%. Based on the radiographic criteria, the success rate was 73.97%, and the survival rate was 100%. A significant increase in root length was observed in the transplanted teeth with an open apex. An association was found between the success rate and use of bone graft and surgeon experience. In conclusion, greater clinical experience in autotransplantation (> 36 cases) and prohibiting the use of bone grafts may improve the prognosis of the transplanted teeth in children and adolescents.
7.In-flight Electrocardiography Monitoring in a Pilot During Cross Country Flight
William D. KIM ; Sang-Wook KIM ; Seong-Kyu CHO ; Ju Hyeon BYEON ; GunYoung LEE ; WooSeok HYUN ; JoungSoon JANG
Korean Journal of Aerospace and Environmental Medicine 2024;34(4):101-107
Purpose:
The diagnosis and management of cardiovascular diseases are important for pilots, as well as the assessment of workload. Heart rate variability (HRV) can be evaluated from electrocardiography (ECG) signals during flight phases to assess the activation of the autonomic nervous system.
Methods:
In this study, continuous ECG activity was recorded of one pilot who flied as a pilot flying during a 4-hour long round trip using wearable ECG machine and was analyzed with MATLAB (R2020b ver. 9.9, The Mathworks Inc.). Total flight was divided into five phases: preflight, take off, cruise, landing, and postflight.
Results:
Mean heart rate (HR) was lowest in the postflight phase (76 bpm), and highest in the landing phase (86 bpm). Landing phase showed the highest values in standard deviation of NN interval (59.3 ms), triangular index (11.7), and triangular interpolation of NN interval (195 ms), while the postflight phase had highest root mean square of successive difference (20.5 ms) and proportion of successive RR interval (3.4 ms). As for frequency-domain metrics, the landing phase had the highest lowfrequency/high-frequency ratio of 5.33. Among the non-linear HRV measures, the landing phase presented the lowest SD1/SD2 ratio (0.15).
Conclusion
We observed the relative increase of mean HR and change of HRV in the landing phase, indicating elevated sympathetic nervous tone. Further studies should be considered to evaluate specific changes of ECG signals in flight phases and confirm the clinical use of the MATLAB signal analysis tools.
8.In-flight Electrocardiography Monitoring in a Pilot During Cross Country Flight
William D. KIM ; Sang-Wook KIM ; Seong-Kyu CHO ; Ju Hyeon BYEON ; GunYoung LEE ; WooSeok HYUN ; JoungSoon JANG
Korean Journal of Aerospace and Environmental Medicine 2024;34(4):101-107
Purpose:
The diagnosis and management of cardiovascular diseases are important for pilots, as well as the assessment of workload. Heart rate variability (HRV) can be evaluated from electrocardiography (ECG) signals during flight phases to assess the activation of the autonomic nervous system.
Methods:
In this study, continuous ECG activity was recorded of one pilot who flied as a pilot flying during a 4-hour long round trip using wearable ECG machine and was analyzed with MATLAB (R2020b ver. 9.9, The Mathworks Inc.). Total flight was divided into five phases: preflight, take off, cruise, landing, and postflight.
Results:
Mean heart rate (HR) was lowest in the postflight phase (76 bpm), and highest in the landing phase (86 bpm). Landing phase showed the highest values in standard deviation of NN interval (59.3 ms), triangular index (11.7), and triangular interpolation of NN interval (195 ms), while the postflight phase had highest root mean square of successive difference (20.5 ms) and proportion of successive RR interval (3.4 ms). As for frequency-domain metrics, the landing phase had the highest lowfrequency/high-frequency ratio of 5.33. Among the non-linear HRV measures, the landing phase presented the lowest SD1/SD2 ratio (0.15).
Conclusion
We observed the relative increase of mean HR and change of HRV in the landing phase, indicating elevated sympathetic nervous tone. Further studies should be considered to evaluate specific changes of ECG signals in flight phases and confirm the clinical use of the MATLAB signal analysis tools.
9.In-flight Electrocardiography Monitoring in a Pilot During Cross Country Flight
William D. KIM ; Sang-Wook KIM ; Seong-Kyu CHO ; Ju Hyeon BYEON ; GunYoung LEE ; WooSeok HYUN ; JoungSoon JANG
Korean Journal of Aerospace and Environmental Medicine 2024;34(4):101-107
Purpose:
The diagnosis and management of cardiovascular diseases are important for pilots, as well as the assessment of workload. Heart rate variability (HRV) can be evaluated from electrocardiography (ECG) signals during flight phases to assess the activation of the autonomic nervous system.
Methods:
In this study, continuous ECG activity was recorded of one pilot who flied as a pilot flying during a 4-hour long round trip using wearable ECG machine and was analyzed with MATLAB (R2020b ver. 9.9, The Mathworks Inc.). Total flight was divided into five phases: preflight, take off, cruise, landing, and postflight.
Results:
Mean heart rate (HR) was lowest in the postflight phase (76 bpm), and highest in the landing phase (86 bpm). Landing phase showed the highest values in standard deviation of NN interval (59.3 ms), triangular index (11.7), and triangular interpolation of NN interval (195 ms), while the postflight phase had highest root mean square of successive difference (20.5 ms) and proportion of successive RR interval (3.4 ms). As for frequency-domain metrics, the landing phase had the highest lowfrequency/high-frequency ratio of 5.33. Among the non-linear HRV measures, the landing phase presented the lowest SD1/SD2 ratio (0.15).
Conclusion
We observed the relative increase of mean HR and change of HRV in the landing phase, indicating elevated sympathetic nervous tone. Further studies should be considered to evaluate specific changes of ECG signals in flight phases and confirm the clinical use of the MATLAB signal analysis tools.
10.Autotransplantation in Pediatric Dentistry: Factors Affecting Treatment Outcomes
Sungjoon CHUNG ; Hyuntae KIM ; Ji-Soo SONG ; Teo Jeon SHIN ; Hong-Keun HYUN ; Young-Jae KIM ; Jung-Wook KIM ; Ki-Taeg JANG
Journal of Korean Academy of Pediatric Dentistry 2024;51(3):245-264
This research aimed to evaluate the outcomes of autotransplantation in both children and adolescents, with a focus on root growth, and determine the clinical and radiographic factors associated with the success rate. In this study, 73 teeth, autogenously transplanted in 63 patients, were examined over an observation period of 3.2 years on average. The mean age at the time of autotransplantation was 11.9 years. Based on the radiographic criteria, the success rate was 73.97% and the survival rate was 100%. Based on the radiographic criteria, the success rate was 73.97%, and the survival rate was 100%. A significant increase in root length was observed in the transplanted teeth with an open apex. An association was found between the success rate and use of bone graft and surgeon experience. In conclusion, greater clinical experience in autotransplantation (> 36 cases) and prohibiting the use of bone grafts may improve the prognosis of the transplanted teeth in children and adolescents.

Result Analysis
Print
Save
E-mail