1.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
2.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
3.Paeoniflorin Protects Retinal Pigment Epithelial Cells from High Glucose-Induced Oxidative Damage by Activating Nrf2-Mediated HO-1 Signaling
Cheol PARK ; Hee-Jae CHA ; Su Hyun HONG ; Jeong Sook NOH ; Sang Hoon HONG ; Gi Young KIM ; Jung-Hyun SHIM ; Jin Won HYUN ; Yung Hyun CHOI
Biomolecules & Therapeutics 2025;33(3):518-528
Oxidative stress due to hyperglycemia damages the functions of retinal pigment epithelial (RPE) cells and is a major risk factor for diabetic retinopathy (DR). Paeoniflorin is a monoterpenoid glycoside found in the roots of Paeonia lactiflora Pall and has been reported to have a variety of health benefits. However, the mechanisms underlying its therapeutic effects on high glucose (HG)-induced oxidative damage in RPE cells are not fully understood. In this study, we investigated the protective effect of paeoniflorin against HG-induced oxidative damage in cultured human RPE ARPE-19 cells, an in vitro model of hyperglycemia. Pretreatment with paeoniflorin markedly reduced HG-induced cytotoxicity and DNA damage. Paeoniflorin inhibited HG-induced apoptosis by suppressing activation of the caspase cascade, and this suppression was associated with the blockade of cytochrome c release to cytoplasm by maintaining mitochondrial membrane stability. In addition, paeoniflorin suppressed the HG-induced production of reactive oxygen species (ROS), increased the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key redox regulator, and the expression of its downstream factor heme oxygenase-1 (HO-1). On the other hand, zinc protoporphyrin (ZnPP), an inhibitor of HO-1, abolished the protective effect of paeoniflorin against ROS production in HG-treated cells. Furthermore, ZnPP reversed the protective effects of paeoniflorin against HG-induced cellular damage and induced mitochondrial damage, DNA injury, and apoptosis in paeoniflorin-treated cells. These results suggest that paeoniflorin protects RPE cells from HG-mediated oxidative stress-induced cytotoxicity by activating Nrf2/HO-1 signaling and highlight the potential therapeutic use of paeoniflorin to improve the symptoms of DR.
4.Association Between Plasma Anti-Factor Xa Concentrations and Large Artery Occlusion in Patients With Acute Ischemic Stroke Taking Direct Oral Anticoagulants for Non-valvular Atrial Fibrillation
Dae-Hyun KIM ; Byung-Cheol KWAK ; Byeol-A YOON ; Jae-Kwan CHA ; Jong-Sung PARK ; Min-Sun KWAK ; Kwang-Sook WOO ; Jin-Yeong HAN
Annals of Laboratory Medicine 2024;44(5):459-462
5.Association Between Plasma Anti-Factor Xa Concentrations and Large Artery Occlusion in Patients With Acute Ischemic Stroke Taking Direct Oral Anticoagulants for Non-valvular Atrial Fibrillation
Dae-Hyun KIM ; Byung-Cheol KWAK ; Byeol-A YOON ; Jae-Kwan CHA ; Jong-Sung PARK ; Min-Sun KWAK ; Kwang-Sook WOO ; Jin-Yeong HAN
Annals of Laboratory Medicine 2024;44(5):459-462
6.Association Between Plasma Anti-Factor Xa Concentrations and Large Artery Occlusion in Patients With Acute Ischemic Stroke Taking Direct Oral Anticoagulants for Non-valvular Atrial Fibrillation
Dae-Hyun KIM ; Byung-Cheol KWAK ; Byeol-A YOON ; Jae-Kwan CHA ; Jong-Sung PARK ; Min-Sun KWAK ; Kwang-Sook WOO ; Jin-Yeong HAN
Annals of Laboratory Medicine 2024;44(5):459-462
7.Association Between Plasma Anti-Factor Xa Concentrations and Large Artery Occlusion in Patients With Acute Ischemic Stroke Taking Direct Oral Anticoagulants for Non-valvular Atrial Fibrillation
Dae-Hyun KIM ; Byung-Cheol KWAK ; Byeol-A YOON ; Jae-Kwan CHA ; Jong-Sung PARK ; Min-Sun KWAK ; Kwang-Sook WOO ; Jin-Yeong HAN
Annals of Laboratory Medicine 2024;44(5):459-462
8.Metabolic Dysfunction-Associated Steatotic Liver Disease in Type 2 Diabetes Mellitus: A Review and Position Statement of the Fatty Liver Research Group of the Korean Diabetes Association
Jaehyun BAE ; Eugene HAN ; Hye Won LEE ; Cheol-Young PARK ; Choon Hee CHUNG ; Dae Ho LEE ; Eun-Hee CHO ; Eun-Jung RHEE ; Ji Hee YU ; Ji Hyun PARK ; Ji-Cheol BAE ; Jung Hwan PARK ; Kyung Mook CHOI ; Kyung-Soo KIM ; Mi Hae SEO ; Minyoung LEE ; Nan-Hee KIM ; So Hun KIM ; Won-Young LEE ; Woo Je LEE ; Yeon-Kyung CHOI ; Yong-ho LEE ; You-Cheol HWANG ; Young Sang LYU ; Byung-Wan LEE ; Bong-Soo CHA ;
Diabetes & Metabolism Journal 2024;48(6):1015-1028
Since the role of the liver in metabolic dysfunction, including type 2 diabetes mellitus, was demonstrated, studies on non-alcoholic fatty liver disease (NAFLD) and metabolic dysfunction-associated fatty liver disease (MAFLD) have shown associations between fatty liver disease and other metabolic diseases. Unlike the exclusionary diagnostic criteria of NAFLD, MAFLD diagnosis is based on the presence of metabolic dysregulation in fatty liver disease. Renaming NAFLD as MAFLD also introduced simpler diagnostic criteria. In 2023, a new nomenclature, steatotic liver disease (SLD), was proposed. Similar to MAFLD, SLD diagnosis is based on the presence of hepatic steatosis with at least one cardiometabolic dysfunction. SLD is categorized into metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction and alcohol-related/-associated liver disease, alcoholrelated liver disease, specific etiology SLD, and cryptogenic SLD. The term MASLD has been adopted by a number of leading national and international societies due to its concise diagnostic criteria, exclusion of other concomitant liver diseases, and lack of stigmatizing terms. This article reviews the diagnostic criteria, clinical relevance, and differences among NAFLD, MAFLD, and MASLD from a diabetologist’s perspective and provides a rationale for adopting SLD/MASLD in the Fatty Liver Research Group of the Korean Diabetes Association.
9.Comparison of Short- and Long-Term Dual-Antiplatelet Therapy After Transcatheter Aortic Valve Replacement: One-Year Outcomes
Jun-Hyok OH ; Jinmi KIM ; Jeong-Su KIM ; Hye Won LEE ; Sun Hack LEE ; Jeong Cheon CHOE ; Min Sun KIM ; Jinhee AHN ; Jung Hyun CHOI ; Han Cheol LEE ; Kwang Soo CHA
Journal of Korean Medical Science 2024;39(47):e294-
Background:
The optimal duration and net clinical benefit of dual antiplatelet therapy (DAPT) after transcatheter aortic valve replacement (TAVR) have not been elucidated in realworld situations.
Methods:
Using nationwide claims data from 2013 to 2021, we selected patients who underwent TAVR and categorized them into two groups: short- and long-term (≤ 3 and > 3 months, respectively) DAPT group. Propensity score matching was used to balance baseline characteristics. The primary endpoint was the occurrence of net adverse clinical events (NACEs), including all-cause death, myocardial infarction, stroke, any coronary and peripheral revascularization, systemic thromboembolism, and bleeding events, at 1 year. Survival analyses were conducted using Kaplan-Meier estimation and Cox proportional hazards regression.
Results:
Patients who met the inclusion criteria (1,695) were selected. Propensity score matching yielded 1,215 pairs of patients: 416 and 799 in the short- and long-term DAPT groups, respectively. In the unmatched cohort, the mean ages were 79.8 ± 6.1 and 79.7 ± 5.8 years for the short- and long-term DAPT groups, respectively. In the matched cohort, the mean ages were 80.6 ± 5.9 and 79.9 ± 5.9 years for the short- and long-term DAPT groups, respectively. Over one year in the unmatched cohort, the NACE incidence was 11.9% and 11.5% in the short- and long-term DAPT groups, respectively (P = 0.893). The all-cause mortality rates were 7.4% and 4.7% (P = 0.042), composite ischemic event rates were 2.5% and 4.7% (P = 0.056), and bleeding event rates were 2.7% and 4.7% (P = 0.056) in the shortand long-term groups, respectively. In the matched cohort, the incidence of NACE was 9.6% in the short-term DAPT group and 11.6% in the long-term DAPT group, respectively (P = 0.329).The all-cause mortality rates were 6.5% and 4.9% (P = 0.298), composite ischemic event rates were 1.4% and 4.5% (P = 0.009), and bleeding event rates were 2.2% and 4.4% (P = 0.072) in the short- and long-term groups, respectively.
Conclusion
In patients who successfully underwent transfemoral TAVR, the short- and longterm DAPT groups exhibited similar one-year NACE rates. However, patients in the long-term DAPT group experienced more bleeding and ischemic events.
10.Comparison of Short- and Long-Term Dual-Antiplatelet Therapy After Transcatheter Aortic Valve Replacement: One-Year Outcomes
Jun-Hyok OH ; Jinmi KIM ; Jeong-Su KIM ; Hye Won LEE ; Sun Hack LEE ; Jeong Cheon CHOE ; Min Sun KIM ; Jinhee AHN ; Jung Hyun CHOI ; Han Cheol LEE ; Kwang Soo CHA
Journal of Korean Medical Science 2024;39(47):e294-
Background:
The optimal duration and net clinical benefit of dual antiplatelet therapy (DAPT) after transcatheter aortic valve replacement (TAVR) have not been elucidated in realworld situations.
Methods:
Using nationwide claims data from 2013 to 2021, we selected patients who underwent TAVR and categorized them into two groups: short- and long-term (≤ 3 and > 3 months, respectively) DAPT group. Propensity score matching was used to balance baseline characteristics. The primary endpoint was the occurrence of net adverse clinical events (NACEs), including all-cause death, myocardial infarction, stroke, any coronary and peripheral revascularization, systemic thromboembolism, and bleeding events, at 1 year. Survival analyses were conducted using Kaplan-Meier estimation and Cox proportional hazards regression.
Results:
Patients who met the inclusion criteria (1,695) were selected. Propensity score matching yielded 1,215 pairs of patients: 416 and 799 in the short- and long-term DAPT groups, respectively. In the unmatched cohort, the mean ages were 79.8 ± 6.1 and 79.7 ± 5.8 years for the short- and long-term DAPT groups, respectively. In the matched cohort, the mean ages were 80.6 ± 5.9 and 79.9 ± 5.9 years for the short- and long-term DAPT groups, respectively. Over one year in the unmatched cohort, the NACE incidence was 11.9% and 11.5% in the short- and long-term DAPT groups, respectively (P = 0.893). The all-cause mortality rates were 7.4% and 4.7% (P = 0.042), composite ischemic event rates were 2.5% and 4.7% (P = 0.056), and bleeding event rates were 2.7% and 4.7% (P = 0.056) in the shortand long-term groups, respectively. In the matched cohort, the incidence of NACE was 9.6% in the short-term DAPT group and 11.6% in the long-term DAPT group, respectively (P = 0.329).The all-cause mortality rates were 6.5% and 4.9% (P = 0.298), composite ischemic event rates were 1.4% and 4.5% (P = 0.009), and bleeding event rates were 2.2% and 4.4% (P = 0.072) in the short- and long-term groups, respectively.
Conclusion
In patients who successfully underwent transfemoral TAVR, the short- and longterm DAPT groups exhibited similar one-year NACE rates. However, patients in the long-term DAPT group experienced more bleeding and ischemic events.

Result Analysis
Print
Save
E-mail