1.Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization.
Christopher Seungkyu LEE ; Eun Young CHOI ; Sung Chul LEE ; Hyoung Jun KOH ; Joon Haeng LEE ; Ji Hyung CHUNG
Yonsei Medical Journal 2015;56(6):1678-1685
PURPOSE: To investigate the effects of resveratrol on the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) in human adult retinal pigment epithelial (ARPE-19) cells, and on experimental choroidal neovascularization (CNV) in mice. MATERIALS AND METHODS: ARPE-19 cells were treated with different concentrations of resveratrol and then incubated under hypoxic conditions with subsequent evaluation of cell viability, expression of HIF-1alpha, and expression of VEGF. The effects of resveratrol on the synthesis and degradation of hypoxia-induced HIF-1alpha were evaluated using inhibitors of the PI3K/Akt/mTOR and the ubiquitin proteasome pathways. In animal studies, CNV lesions were induced in C57BL/6 mice by laser photocoagulation. After 7 days of oral administration of resveratrol or vehicle, which began one day after CNV induction, image analysis was used to measure CNV areas on choroidal flat mounts stained with isolectin IB4. RESULTS: In ARPE-19 cells, resveratrol significantly inhibited HIF-1alpha and VEGF in a dose-dependent manner, by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1alpha degradation. In mice experiments, orally administered resveratrol significantly inhibited CNV growth in a dose-dependent manner. CONCLUSION: Resveratrol may have therapeutic value in the management of diseases involving pathological neovascularization.
Adult
;
Animals
;
Anoxia/metabolism/physiopathology
;
Cell Survival/drug effects
;
Choroidal Neovascularization/*metabolism/pathology
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*drug effects/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/antagonists & inhibitors/*physiology
;
Proteasome Endopeptidase Complex
;
Proto-Oncogene Proteins c-akt/antagonists & inhibitors/*physiology
;
Retinal Pigment Epithelium/*drug effects/metabolism
;
Signal Transduction
;
Stilbenes/administration & dosage/*pharmacology
;
TOR Serine-Threonine Kinases/antagonists & inhibitors/*physiology
;
Ubiquitin
;
Vascular Endothelial Growth Factor A/*drug effects/metabolism
2.Effect of Endogenous Bone Marrow Derived Stem Cells Induced by AMD-3100 on Expanded Ischemic Flap.
Hii Sun JEONG ; Hye Kyung LEE ; Kwan Chul TARK ; Dae Hyun LEW ; Yoon Woo KOH ; Chul Hoon KIM ; In Suck SEO
Journal of Korean Medical Science 2014;29(Suppl 3):S237-S248
The purpose of this study was to devise an expanded ischemic flap model and to investigate the role of AMD-3100 (Plerixafor, chemokine receptor 4 inhibitor) in this model by confirming its effect on mobilization of stem cells from the bone marrow. Male Sprague-Dawley rats were used as an animal research model. The mobilization of stem cells from the bone marrow was confirmed in the AMD-3100-treated group. The fractions of endothelial progenitor cells (EPC) and the vascular endothelial growth factor receptor (VEGFR) 2+ cells in the peripheral blood were increased in groups treated with AMD-3100. The expression of vascular endothelial growth factor (VEGF) was increased in response to expansion or AMD injection. The expression of stromal cell derived factor (SDF)-1 and VEGFR2 were increased only in unexpanded flap treated with AMD-3100. Treatment with AMD-3100 increased both the number and area of blood vessels. However, there were no statistically significant differences in the survival area or physiologic microcirculation in rats from the other groups. This endogenous neovascularization induced by AMD-3100 may be a result of the increase in both the area and number of vessels, as well as paracrine augmentation of the expression of VEGF and EPCs. However, the presence of a tissue expander under the flap could block the neovascularization between the flap and the recipient regardless of AMD-3100 treatment and expansion.
Animals
;
Anti-HIV Agents/pharmacology
;
Bone Marrow Cells/cytology
;
Chemokine CXCL12/biosynthesis
;
Endothelial Progenitor Cells/*cytology
;
Hematopoietic Stem Cells/*cytology
;
Heterocyclic Compounds/*pharmacology
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Male
;
Neovascularization, Physiologic
;
Nitric Oxide Synthase Type III/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, CXCR4/antagonists & inhibitors
;
Surgical Flaps/*blood supply/surgery
;
Tissue Expansion/*methods
;
Vascular Endothelial Growth Factor A/biosynthesis
;
Vascular Endothelial Growth Factor Receptor-2/biosynthesis/metabolism
3.Bilirubin Activates Transcription of HIF-1alpha in Human Proximal Tubular Cells Cultured in the Physiologic Oxygen Content.
Sung Gyun KIM ; Shin Young AHN ; Eun Seong LEE ; Sejoong KIM ; Ki Young NA ; Dong Wan CHAE ; Ho Jun CHIN
Journal of Korean Medical Science 2014;29(Suppl 2):S146-S154
The expression of hypoxia-inducible factor (HIF) is influenced by reactive oxygen species (ROS). Effect of bilirubin on HIF-1 expression in proximal tubular cells was investigated under physiological oxygen concentration, which is relative hypoxic condition mimicking oxygen content in the medulla of renal tissue. The human kidney (HK2) cells were cultured in 5% oxygen with or without bilirubin. HIF-1alpha protein expression was increased by bilirubin treatment at 0.01-0.2 mg/dL concentration. The messenger RNA expression of HIF-1alpha was increased by 1.69+/-0.05 folds in the cells cultured with 0.1 mg/dL bilirubin, compared to the control cells. The inhibitors of PI3K/mTOR, PI3K/AKT, and ERK 1/2 pathways did not attenuate increased HIF-1alpha expression by bilirubin. HIF-1alpha expression decreased by 10 microM exogenous hydrogen peroxide (H2O2); scavenger of ROS with or without bilirubin in the HK2 cells increased HIF-1alpha concentration more than that in the cells without bilirubin. Exogenous H2O2 decreased the phosphorylation of P70S6 kinase, which was completely reversed by bilirubin treatment. Knockdown of NOX4 gene by small interfering RNA (siRNA) increased HIF-1alpha mRNA expression. In coonclusion, bilirubin enhances HIF-1alpha transcription as well as the up-regulation of HIF-1alpha protein translation through the attenuation of ROS and subunits of NADPH oxidase.
Bilirubin/*pharmacology
;
Cell Line
;
Epithelial Cells/cytology/metabolism
;
Humans
;
Hydrogen Peroxide/toxicity
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics/*metabolism
;
Kidney Tubules, Proximal/cytology
;
Mitogen-Activated Protein Kinase 1/metabolism
;
Mitogen-Activated Protein Kinase 3/metabolism
;
NADPH Oxidase/antagonists & inhibitors/genetics/metabolism
;
Oxygen/*pharmacology
;
Phosphatidylinositol 3-Kinases/metabolism
;
Phosphorylation/drug effects
;
Proto-Oncogene Proteins c-akt/metabolism
;
RNA Interference
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism
;
Signal Transduction/drug effects
;
TOR Serine-Threonine Kinases/metabolism
;
Transcriptional Activation/*drug effects
;
Up-Regulation/drug effects
4.Development of a novel screening assay for inhibitors targeting HIF-1alpha and P300 interaction.
Fang-Fang LAI ; Fei NIU ; Han-Ze YANG ; Wan-Qi ZHOU ; Xiao-Guang CHEN
Acta Pharmaceutica Sinica 2014;49(6):849-853
Hypoxia is a general characteristic of most solid malignancies and intimately related to cancer progression. Homeostatic response to hypoxia is primarily mediated by hypoxia inducible factor-1alpha (HIF-1alpha) that elicits transcriptional activity through recruitment P300 coactivator. Targeting the interaction of HIF- alpha and P300 would thus constitute a novel approach for cancer treatment by suppressing tumor angiogenesis and metastasis. Here, a screening assay was developed for inhibitors targeting the interaction between HIF-1alpha and P300. The nucleotide sequence of human HIF-1alpha and P300 were cloned into pBIND and pACT vectors, named pBIND-HIF1alpha and pACT-P300. The interaction of HIF-1alpha and P300 was identified in HEK293 cell using mammalian two-hybrid system. And compound chetomin decreased their interaction in this mammalian two-hybrid system. We further verified HIF-1 inhibition effect of chetomin in U251-HRE cells. Therefore, we established a screening assay combined HIF-1alpha and P300 mammalian two-hybrid system and U251-HRE reporter assay for HIF-1 selective inhibitors.
Cell Hypoxia
;
Disulfides
;
pharmacology
;
Drug Screening Assays, Antitumor
;
E1A-Associated p300 Protein
;
antagonists & inhibitors
;
HEK293 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
antagonists & inhibitors
;
Indole Alkaloids
;
pharmacology
;
Two-Hybrid System Techniques
5.Research progress of hypoxia-inducible factor 1 inhibitors against tumors.
Fei NIU ; Yan LI ; Fang-Fang LAI ; Xiao-Guang CHEN
Acta Pharmaceutica Sinica 2014;49(6):832-836
Hypoxia occurs in chronic and acute vascular diseases and tumor formation. The ability of tumor cells to maintain a balance between an adaptation to hypoxia and cell death is regulated by a family of transcription factors called hypoxia-inducible factor 1 (HIF-1). Tumor hypoxia mediated by HIF-1 would facilitate the likelihood of resistance to chemotherapy and radiotherapy, proliferation, metastasis and the invasive potential; all of which culminate in a decrease in patient survival. And HIF-1 alpha subunit decides the activity of HIF-1, which is regulated by oxygen. So understanding the role of HIF in signal pathway, drug resistance mechanism and its feature is crucial for developing novel anticancer therapies. In recent years, more attentions have focused on HIF-1 alpha inhibitors. It is expected that development of more potent and selective HIF inhibitors will provide an effective treatment of cancer and other HIF-related diseases. So we will focus on the biological characteristics and mechanism of HIF-1 to review currently studied HIF-1 inhibitors.
Cell Death
;
Humans
;
Hypoxia-Inducible Factor 1
;
antagonists & inhibitors
;
metabolism
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
antagonists & inhibitors
;
metabolism
;
Neoplasms
;
drug therapy
;
Oxygen
;
metabolism
;
Signal Transduction
6.Effect of NADPH oxidase inhibitor apocynin on the expression of hypoxia-induced factor-1α and endothelin-1 in rat carotid body exposed to chronic intermittent hypoxia.
Xue LIU ; Yan DENG ; Jin SHANG ; Xiu-Hong YANG ; Kui LIU ; Hui-Guo LIU ; Yong-Jian XU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(2):178-184
The effects of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin on the enhanced hypoxia induced factor-1α (HIF-1α) and endothelin-1 (ET-1) expression, elevated systolic blood pressure under chronic intermittent hypoxia (CIH) condition and its action mechanism were investigated. Thirty healthy 8-week old Sprague-Dawley (SD) male rats were randomly divided into three groups (n=10 each): sham group, CIH group, and apocynin-treated CIH group. Tail artery systolic blood pressure was measured by tail-cuff method. Real-time fluorescence quantitative polymerase chain reaction (PCR) was used to detect the mRNA expression of HIF-1α and ET-1 in the carotid body, and the HIF-1α protein expression was examined by using Western blotting. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by using colorimetric method. In addition, the plasma ET-1 and HIF-1α levels were measured by using enzyme-linked immunosorbent assay. It was found that CIH exposure was associated with increased MDA levels, and apocynin-treated CIH animals showed reduction in MDA levels. Apocynin treatment prevented CIH-induced hypertension as well as CIH-induced decrease in SOD. The increases of HIF-1α and ET-1 mRNA along with HIF-1α protein expression in the carotid body, and elevated circulating HIF-1α and ET-1 levels were observed in CIH-exposed animals. Treatment with apocynin significantly decreased the ET-1 mRNA, HIF-1α protein expression and circulating HIF-1α level in CIH-exposed animals, and there was no statistically significant difference in the HIF-1α mRNA expression between CIH group and apocynin-treated group. These results indicated that apocynin alleviated CIH-induced hypertension by inhibiting NADPH oxidase, further leading to the reduced vasoconstrictor ET-1 level and oxidative stress. HIF-1α/ET-1 system signal pathway may interact with CIH-induced NADPH oxidase-dependent oxidative stress. Inhibition of NADPH oxidase activity may hopefully serve as a useful strategy for prevention and treatment of obstructive sleep apnea hypopnea syndrome-induced hypertension.
Acetophenones
;
administration & dosage
;
Animals
;
Antioxidants
;
administration & dosage
;
Carotid Body
;
drug effects
;
metabolism
;
Endothelin-1
;
metabolism
;
Hypoxia
;
drug therapy
;
metabolism
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Male
;
NADP
;
antagonists & inhibitors
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Treatment Outcome
7.Blockade of VEGFR-1 and VEGFR-2 Enhances Paclitaxel Sensitivity in Gastric Cancer Cells.
Jun Eul HWANG ; Ji Hee LEE ; Mi Ra PARK ; Dae Eun KIM ; Woo Kyun BAE ; Hyun Jeong SHIM ; Sang Hee CHO ; Ik Joo CHUNG
Yonsei Medical Journal 2013;54(2):374-380
PURPOSE: Hypoxia-inducible factor-1alpha (HIF-1alpha) increases transcription of the vascular endothelial growth factor (VEGF) gene. Inhibition of VEGF abolishes VEGF mediated induction of HIF-1alpha. Recent reports suggested that HIF-1alpha also mediated the induction of class III beta-tubulin (TUBB3) in hypoxia. TUBB3 confers resistance to taxanes. Inhibition of VEGF may decrease the expression of HIF-1alpha and TUBB3. This study was undertaken to investigate the roles of vascular endothelial growth factor receptor (VEGFR) in gastric cancer cell behavior and to identify methods to overcome paclitaxel resistance in vitro. MATERIALS AND METHODS: The protein expression levels of HIF-1alpha and TUBB3 were measured in human gastric cancer cell lines (AGS) under normoxic and hypoxic conditions. The relationship between TUBB3 and paclitaxel resistance was assessed with small interfering TUBB3 RNA. AGS cells were treated with anti-VEGFR-1, anti-VEGFR-2, placental growth factor (PlGF), bevacizuamb, and paclitaxel. RESULTS: Hypoxia induced paclitaxel resistance was decreased by knockdown of TUBB3. Induction of HIF-1alpha and TUBB3 in AGS is VEGFR-1 mediated and PlGF dependent. Hypoxia-dependent upregulation of HIF-1alpha and TUBB3 was reduced in response to paclitaxel treatment. Expressions of HIF-1alpha and TUBB3 were most decreased when AGS cells were treated with a combination of paclitaxel and anti-VEGFR-1. AGS cell cytotoxicity was most increased in response to paclitaxel, anti-VEGFR-1, and anti-VEGFR-2. CONCLUSION: We suggest that blockade of VEGFR-1 and VEGFR-2 enhances paclitaxel sensitivity in TUBB3-expressing gastric cancer cells.
Angiogenesis Inhibitors/pharmacology
;
Antibodies, Monoclonal, Humanized/pharmacology
;
Antineoplastic Agents, Phytogenic/*pharmacology
;
Cell Hypoxia
;
Cell Line, Tumor
;
*Drug Resistance, Neoplasm
;
Gene Expression Regulation, Neoplastic/drug effects
;
Gene Knockdown Techniques
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Paclitaxel/*pharmacology
;
Pregnancy Proteins/pharmacology
;
Stomach Neoplasms/drug therapy/genetics
;
Tubulin/genetics/metabolism
;
Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors/*physiology
;
Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors/*physiology
8.Effects of PI3K inhibitor NVP-BKM120 on acquired resistance to gefitinib of human lung adenocarcinoma H1975 cells.
Yi-chen LIANG ; Hong-ge WU ; Hong-jian XUE ; Qing LIU ; Liang-liang SHI ; Tao LIU ; Gang WU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2013;33(6):845-851
The effects of class I PI3K inhibitor NVP-BKM120 on cell proliferation, cell cycle distribution, cellular apoptosis, phosphorylation of several proteins of the PI3K/AKT signaling pathway and the mRNA expression levels of HIF1-α, VEGF and MMP9 in the acquired gefitinib resistant cell line H1975 were investigated, and whether NVP-BKM120 can overcome the acquired resistance caused by the EGFR T790M mutation and the underlying mechanism were explored. MTT assay was performed to detect the effect of gefitinib, NVP-BKM120, NVP-BKM120 plus 1 μmol/L gefitinib on growth of H1975 cells. The distribution of cell cycle and apoptosis rate of H1975 cells were examined by using flow cytometry. The mRNA expression levels of tumor-related genes such as HIF1-α, VEGF and MMP9 were detected by using real-time quantitative PCR. Western blotting was used to detect the expression level of phosphorylated proteins in the PI3K/AKT signaling pathway, such as Ser473-p-AKT, Ser235/236-p-S6 and Thr70-p-4E-BP1, as well as total AKT, S6 and 4E-BP1. The results showed that the NVP-BKM120 could inhibit the growth of H1975 cells in a concentration-dependent manner, and H1975 cells were more sensitive to NVP-BKM120 than gefitinib (IC50:1.385 vs. 15.09 μmol/L respectively), whereas combination of NVP-BKM120 and gefitinib (1 μmol/L) did not show more obvious effect than NVP-BKM120 used alone on inhibition of cell growth (P>0.05). NVP-BKM120 (1 μmol/L) increased the proportion of H1975 cells in G0-G1 phase and the effect was concentration-dependent, and 2 μmol/L NVP-BKM120 promoted apoptosis of H1975 cells. There was no significant difference in the proportion of H1975 cells in G0-G1 phase and apoptosis rate between NVP-BKM120-treated alone group and NVP-BKM120 plus genfitinib (1 μmol/L)-treated group or between DMSO-treated control group and gefitinib (1 μmol/L)-treated alone group (P>0.05 for all). It was also found that the mRNA expression levels of these genes were down-regulated by NVP-BKM120 (1 μmol/L), and NVP-BKM120 (1 μmol/L) or NVP-BKM120 (1 μmol/L) plus gefitinib (1 μmol/L) obviously inhibited the activation of Akt, S6 and 4E-BP1 as compared with control group, but single use of gefitinib (1 μmol/L) exerted no significant effect. These data suggested that NVP-BKM120 can overcome gefitinib resistance in H1975 cells, and the combination of NVP-BKM120 and gefitinib did not have additive or synergistic effects. It was also concluded that NVP-BKM120 could overcome the acquired resistance to gefitinib by down-regulating the phosphorylated protein in PI3K/AKT signal pathways in H1975 cells, but it could not enhance the sensitivity of H1975 cells to gefitinib.
Adenocarcinoma
;
metabolism
;
Aminopyridines
;
pharmacology
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Drug Resistance, Neoplasm
;
drug effects
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Lung Neoplasms
;
metabolism
;
Matrix Metalloproteinase 9
;
genetics
;
metabolism
;
Morpholines
;
pharmacology
;
Phosphatidylinositol 3-Kinases
;
antagonists & inhibitors
;
Quinazolines
;
pharmacology
;
RNA, Messenger
;
genetics
;
metabolism
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism
9.Effects of echinomycin on endothelin-2 expression and ovulation in immature rats primed with gonadotropins.
Zhengchao WANG ; Zhenghong ZHANG ; Yanqing WU ; Liyun CHEN ; Qianping LUO ; Jisen ZHANG ; Jiajie CHEN ; Zimiao LUO ; Xiaohong HUANG ; Yong CHENG
Experimental & Molecular Medicine 2012;44(10):615-621
Echinomycin is a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity, which plays a crucial role in ovarian ovulation in mammalians. The present study was designed to test the hypothesis that hypoxia-inducible factor (HIF)-1alpha-mediated endothelin (ET)-2 expressions contributed to ovarian ovulation in response to human chorionic gonadotropin (hCG) during gonadotropin-induced superuvulation. By real-time RT-PCR analysis, ET-2 mRNA level was found to significantly decrease in the ovaries after echinomycin treatment, while HIF-1alpha mRNA and protein expression was not obviously changed. Further analysis also showed that these changes of ET-2 mRNA were consistent with HIF-1 activity in the ovaires, which is similar with HIF-1alpha and ET-2 expression in the granulosa cells with gonadotropin and echinomycin treatments. The results of HIF-1alpha and ET-2 expression in the granulosa cells transfected with cis-element oligodeoxynucleotide (dsODN) under gonadotropin treatment further indicated HIF-1alpha directly mediated the transcriptional activation of ET-2 during gonadotropin-induced superuvulation. Taken together, these results demonstrated that HIF-1alpha-mediated ET-2 transcriptional activation is one of the important mechanisms regulating gonadotropin-induced mammalian ovulatory precess in vivo.
Animals
;
Cells, Cultured
;
Chorionic Gonadotropin/*pharmacology
;
Echinomycin/*pharmacology
;
Endothelin-2/genetics/*metabolism
;
Female
;
Gonadotropins, Equine/*pharmacology
;
Granulosa Cells/drug effects/metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*antagonists & inhibitors/genetics/metabolism/physiology
;
Oligonucleotides/genetics
;
Ovary/cytology/drug effects/physiology
;
Rats
;
Rats, Sprague-Dawley
;
Superovulation/*drug effects
;
Transcriptional Activation
10.YC-1 exerts inhibitory effects on MDA-MB-468 breast cancer cells by targeting EGFR in vitro and in vivo under normoxic condition.
Ying CHENG ; Wei LI ; Ying LIU ; Huan-Chen CHENG ; Jun MA ; Lin QIU
Chinese Journal of Cancer 2012;31(5):248-256
3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), the hypoxia-inducible factor-1 alpha (HIF-1α) inhibitor, suppresses tumor proliferation and metastasis by down-regulating HIF-1α expression under hypoxic conditions. Our previous studies demonstrated that YC-1 inhibited breast cancer cell proliferation under normoxic conditions. In the current study, we investigated the targets of YC-1 and mechanism of its action in MDA-MB-468 breast cancer cells. In the in vitro experiments, we found that YC-1 significantly inhibited MDA-MB-468 cell proliferation in normoxia and hypoxia. Under normoxic conditions, YC-1 induced apoptosis of MDA-MB-468 cells and blocked cell cycle in the G1 phase, and these effects were possibly related to caspase 8, p21, and p27 expression. RT-PCR and Western blotting results showed that YC-1 primarily inhibited HIF-1α at the mRNA and protein levels under hypoxic conditions, but suppressed the expression of epidermal growth factor receptor(EGFR) at the mRNA and protein levels under normoxic conditions. In vivo, YC-1 prolonged survival, increased survival rate, decreased tumor size and metastasis rate, and inhibited tissue EGFR and HIF-1α expression. However, YC-1 exerted no obvious effect on body weight. These results indicate that YC-1 inhibits the proliferation of MDA-MB-468 cells by acting on multiple targets with minimal side effects. Thus, YC-1 is a promising target drug for breast cancer.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Cycle
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Female
;
G1 Phase
;
drug effects
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Indazoles
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Mice, Nude
;
Neoplasm Metastasis
;
Neoplasm Transplantation
;
Oxygen
;
metabolism
;
pharmacology
;
RNA, Messenger
;
metabolism
;
Receptor, Epidermal Growth Factor
;
genetics
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
;
Tumor Burden
;
drug effects

Result Analysis
Print
Save
E-mail