1.Aerobic glycolysis in colon cancer is repressed by naringin via the HIF1Α pathway.
Guangtao PAN ; Ping ZHANG ; Aiying CHEN ; Yu DENG ; Zhen ZHANG ; Han LU ; Aoxun ZHU ; Cong ZHOU ; Yanran WU ; Sen LI
Journal of Zhejiang University. Science. B 2023;24(3):221-231
Metabolic reprogramming is a common phenomenon in cancer, with aerobic glycolysis being one of its important characteristics. Hypoxia-inducible factor-1α (HIF1Α) is thought to play an important role in aerobic glycolysis. Meanwhile, naringin is a natural flavanone glycoside derived from grapefruits and many other citrus fruits. In this work, we identified glycolytic genes related to HIF1Α by analyzing the colon cancer database. The analysis of extracellular acidification rate and cell function verified the regulatory effects of HIF1Α overexpression on glycolysis, and the proliferation and migration of colon cancer cells. Moreover, naringin was used as an inhibitor of colon cancer cells to illustrate its effect on HIF1Α function. The results showed that the HIF1Α and enolase 2 (ENO2) levels in colon cancer tissues were highly correlated, and their high expression indicated a poor prognosis for colon cancer patients. Mechanistically, HIF1Α directly binds to the DNA promoter region and upregulates the transcription of ENO2; ectopic expression of ENO2 increased aerobic glycolysis in colon cancer cells. Most importantly, we found that the appropriate concentration of naringin inhibited the transcriptional activity of HIF1Α, which in turn decreased aerobic glycolysis in colon cancer cells. Generally, naringin reduces glycolysis in colon cancer cells by reducing the transcriptional activity of HIF1Α and the proliferation and invasion of colon cancer cells. This study helps to elucidate the relationship between colon cancer progression and glucose metabolism, and demonstrates the efficacy of naringin in the treatment of colon cancer.
Glycolysis
;
Colonic Neoplasms/metabolism*
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Phosphopyruvate Hydratase/metabolism*
;
Flavanones/pharmacology*
;
Cell Line, Tumor
;
Databases, Genetic
;
Cell Proliferation/drug effects*
;
Transfection
;
Warburg Effect, Oncologic
2.Effect of Tripterygium Glycosides Tablets on synovial angiogenesis in rats with type Ⅱ collagen induced arthritis.
Jing-Xia WANG ; Chun-Fang LIU ; Yi-Qun LI ; Xiao-Hui SU ; Li-Ling LIU ; Ya-Ge TIAN ; Jin-Xia WANG ; Ke-Xin JIA ; Na LIN
China Journal of Chinese Materia Medica 2019;44(16):3441-3447
To observe the effect of Tripterygium Glycosides Tablets on angiogenesis of rats with type Ⅱ collagen-induced arthritis( CIA) and on the tube formation of human umbilical vein endothelial cells( HUVEC) in vitro. The HUVEC were induced by 20 μg·L-1 vascular endothelial growth factor( VEGF) in vitro,and were treated with 0. 1,1,10 mg·L-1 Tripterygium Glycosides Tablets continuously for 7 hours. The numbers of branches of tube formation were measured. SD rats were immunized to establish CIA. CIA rats were treated with 9,18,36 mg·kg-1·d-1 Tripterygium Glycosides Tablets for 42 days. Histopathological examination( HE) was performed to observe the vascular morphology and vascular density in the synovial membrane of the inflamed joints. Immunohistochemistry and immunofluorescence were performed to observe the expression of platelets-endothelial cell adhesion molecule( CD31) and αsmooth muscle actin( αSMA) in synovial membrane. Immunohistochemistry and Western blot were performed to observe the expression of hypoxia-inducible factors 1α( HIF1α) and angiotensin 1( Ang1) in the synovial tissue. The results showed that the numbers of branches of tube formation of HUVEC induced by VEGF were improved,and declined significantly after treated by Tripterygium Glycosides Tablets. Compared with the normal group,the vascular density,CD31 positive expression,CD31 +/αSMA-immature and total vascular positive expression in the synovial membrane of the model group were significantly increased,and so as HIF1α and Ang1 in the synovium. Tripterygium Glycosides Tablets reduced the synovial vascular density and inhibited the positive expression of CD31,CD31+/αSMA-immature blood vessels and total vascular,but has no effect on CD31+/αSMA+mature blood vessels. Tripterygium Glycosides Tablets also inhibited the expression of HIF1α and Ang1 in synovial membrane of inflammatory joints. Our results demonstrated that Tripterygium Glycosides Tablets could inhibit the angiogenesis of synovial tissue in CIA rats and the tube formation of HUVEC,which is related to the down-regulation of HIF1α/Ang1 signal axis.
Angiogenesis Inhibitors
;
pharmacology
;
Angiotensin I
;
metabolism
;
Animals
;
Arthritis, Experimental
;
chemically induced
;
drug therapy
;
Drugs, Chinese Herbal
;
pharmacology
;
Glycosides
;
pharmacology
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Synovial Membrane
;
drug effects
;
Tablets
;
Tripterygium
;
chemistry
;
Vascular Endothelial Growth Factor A
3.Houttuynia cordata polysaccharide alleviated intestinal injury and modulated intestinal microbiota in H1N1 virus infected mice.
Mei-Yu CHEN ; Hong LI ; Xiao-Xiao LU ; Li-Jun LING ; Hong-Bo WENG ; Wei SUN ; Dao-Feng CHEN ; Yun-Yi ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2019;17(3):187-197
Houttuynia cordata polysaccharide (HCP) is extracted from Houttuynia cordata, a key traditional Chinese medicine. The study was to investigate the effects of HCP on intestinal barrier and microbiota in H1N1 virus infected mice. Mice were infected with H1N1 virus and orally administrated HCP at a dosage of 40 mg(kg(d. H1N1 infection caused pulmonary and intestinal injury and gut microbiota imbalance. HCP significantly suppressed the expression of hypoxia inducible factor-1α and decreased mucosubstances in goblet cells, but restored the level of zonula occludens-1 in intestine. HCP also reversed the composition change of intestinal microbiota caused by H1N1 infection, with significantly reduced relative abundances of Vibrio and Bacillus, the pathogenic bacterial genera. Furthermore, HCP rebalanced the gut microbiota and restored the intestinal homeostasis to some degree. The inhibition of inflammation was associated with the reduced level of Toll-like receptors and interleukin-1β in intestine, as well as the increased production of interleukin-10. Oral administration of HCP alleviated lung injury and intestinal dysfunction caused by H1N1 infection. HCP may gain systemic treatment by local acting on intestine and microbiota. This study proved the high-value application of HCP.
Animals
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Gastrointestinal Microbiome
;
drug effects
;
Houttuynia
;
chemistry
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
metabolism
;
Inflammation
;
drug therapy
;
pathology
;
Influenza A Virus, H1N1 Subtype
;
pathogenicity
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
microbiology
;
pathology
;
Lung
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice, Inbred BALB C
;
Orthomyxoviridae Infections
;
drug therapy
;
pathology
;
physiopathology
;
Plant Extracts
;
chemistry
;
Polysaccharides
;
chemistry
;
pharmacology
;
therapeutic use
;
Toll-Like Receptors
;
metabolism
;
Zonula Occludens-1 Protein
;
metabolism
4.Activation of hypoxia-inducible factor 1 attenuates periapical inflammation and bone loss.
Kimito HIRAI ; Hisako FURUSHO ; Kiichi HIROTA ; Hajime SASAKI
International Journal of Oral Science 2018;10(2):12-12
Hypoxia (low oxygen level) is an important feature during infections and affects the host defence mechanisms. The host has evolved specific responses to address hypoxia, which are strongly dependent on the activation of hypoxia-inducible factor 1 (HIF-1). Hypoxia interferes degradation of HIF-1 alpha subunit (HIF-1α), leading to stabilisation of HIF-1α, heterodimerization with HIF-1 beta subunit (HIF-1β) and subsequent activation of HIF-1 pathway. Apical periodontitis (periapical lesion) is a consequence of endodontic infection and ultimately results in destruction of tooth-supporting tissue, including alveolar bone. Thus far, the role of HIF-1 in periapical lesions has not been systematically examined. In the present study, we determined the role of HIF-1 in a well-characterised mouse periapical lesion model using two HIF-1α-activating strategies, dimethyloxalylglycine (DMOG) and adenovirus-induced constitutively active HIF-1α (CA-HIF1A). Both DMOG and CA-HIF1A attenuated periapical inflammation and tissue destruction. The attenuation in vivo was associated with downregulation of nuclear factor-κappa B (NF-κB) and osteoclastic gene expressions. These two agents also suppressed NF-κB activation and subsequent production of proinflammatory cytokines by macrophages. Furthermore, activation of HIF-1α by DMOG specifically suppressed lipopolysaccharide-stimulated macrophage differentiation into M1 cells, increasing the ratio of M2 macrophages against M1 cells. Taken together, our data indicated that activation of HIF-1 plays a protective role in the development of apical periodontitis via downregulation of NF-κB, proinflammatory cytokines, M1 macrophages and osteoclastogenesis.
Alveolar Bone Loss
;
metabolism
;
prevention & control
;
Amino Acids, Dicarboxylic
;
pharmacology
;
Animals
;
Cytokines
;
metabolism
;
Down-Regulation
;
Gene Expression
;
drug effects
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
physiology
;
Macrophages
;
physiology
;
Mice
;
NF-kappa B
;
metabolism
;
Osteogenesis
;
physiology
;
Periapical Periodontitis
;
metabolism
;
prevention & control
;
Real-Time Polymerase Chain Reaction
;
X-Ray Microtomography
5.Huannao Yicong Formula () regulates γ-secretase activity through APH-1 and PEN-2 gene ragulation pathways in hippocampus of APP/PS1 double transgenic mice.
Zhi-Yong WANG ; Jian-Gang LIU ; Yun WEI ; Mei-Xia LIU ; Qi WANG ; Lin LIANG ; Hui-Min YANG ; Hao LI
Chinese journal of integrative medicine 2017;23(4):270-278
OBJECTIVETo observe the effects of Huannao Yicong Formula (, HYF) on learning and memory and it's regulating effect on γ-secretase related anterior pharynx defective 1 (APH-1), presenilin enhancer-2 (PEN-2) signaling pathway, so as to discuss and further clarify the mechanism of HYF on Alzheimer's disease.
METHODSSixty APP/PS1 transgenic mice, randomly allocated into 4 groups, the model group, the donepezil group (0.65 mg/kg), HYF low-dose group (HYF-L, 5.46 g/kg) and HYF high-dose group (HYF-H, 10.92 g/kg), 15 for each group. Another 15 C57BL/6J mice with the same age and same genetic background were allocated into the control group, proper dosage of drugs or distilled water were given by intragastric administration once daily for 12 weeks. After 12 weeks of administration, the learning and memory abilities of mice in each group was evaluated by the morris water maze test, amyloid precursor protein (APP), Aβand Aβlevels in hippocampus were detected by enzyme-linked immunosorbent assay, γ-secretase was detected by dual luciferase assaying, the levels of APH-1a, hypoxia-inducible factor 1α (HIF-1α), cAMP response element-binding protein (CREB) and PEN-2 and their mRNA expression was measured by Western blot and real-time polymerase chain reaction.
RESULTSHYF can ameliorate learning and memory deficits in APP/PS1 transgenic mice by decreasing the escape latency, improving the number of platform crossing and swimming speed (P<0.01, P<0.05). HYF can decrease the levels of APP, Aβ, Aβand the activity of γ-secretase in hippocampus of Alzheimer's disease model mice. HYF can down-regulate the levels of CREB and PEN-2 and the expression of their mRNA.
CONCLUSIONHYF can improve the learning and memory ability by inhibiting the activity of γ-secretase through the CREB/PEN-2 signaling pathway, and this may be one of the therapeutic mechanisms of HYF in Alzheimer's disease.
Amyloid Precursor Protein Secretases ; metabolism ; Amyloid beta-Protein Precursor ; metabolism ; Animals ; Cyclic AMP Response Element-Binding Protein ; genetics ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Endopeptidases ; genetics ; metabolism ; Enzyme-Linked Immunosorbent Assay ; Female ; Gene Expression Regulation ; drug effects ; Hippocampus ; drug effects ; metabolism ; pathology ; Hypoxia-Inducible Factor 1, alpha Subunit ; genetics ; metabolism ; Immunohistochemistry ; Learning ; drug effects ; Male ; Memory Disorders ; drug therapy ; genetics ; Mice, Inbred C57BL ; Mice, Transgenic ; Presenilin-1 ; metabolism ; Presenilin-2 ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Signal Transduction ; drug effects
6.Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition.
Chao-Qiang YANG ; Jing-Hua XU ; Dan-Dan YAN ; Bao-Lin LIU ; Kang LIU ; Fang HUANG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(9):664-673
Adipose tissue hypoxia has been recognized as the initiation of insulin resistance syndromes. The aim of the present study was to investigate the effects of mangiferin on the insulin signaling pathway and explore whether mangiferin could ameliorate insulin resistance caused by hypoxia in adipose tissue. Differentiated 3T3-L1 adipocytes were incubated under normal and hypoxic conditions, respectively. Protein expressions were analyzed by Western blotting. Inflammatory cytokines and HIF-1-dependent genes were tested by ELISA and q-PCR, respectively. The glucose uptake was detected by fluorescence microscopy. HIF-1α was abundantly expressed during 8 h of hypoxic incubation. Inflammatory reaction was activated by up-regulated NF-κB phosphorylation and released cytokines like IL-6 and TNF-α. Glucose uptake was inhibited and insulin signaling pathway was damaged as well. Mangiferin substantially inhibited the expression of HIF-1α. Lactate acid and lipolysis, products released by glycometabolism and lipolysis, were also inhibited. The expression of inflammatory cytokines was significantly reduced and the damaged insulin signaling pathway was restored to proper functional level. The glucose uptake of hypoxic adipocytes was promoted and the dysfunction of adipocytes was relieved. These results showed that mangiferin could not only improve the damaged insulin signaling pathway in hypoxic adipocytes, but also ameliorate inflammatory reaction and insulin resistance caused by hypoxia.
3T3-L1 Cells
;
Adipocytes
;
drug effects
;
immunology
;
Adipokines
;
genetics
;
immunology
;
Animals
;
Cell Hypoxia
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
immunology
;
Insulin
;
metabolism
;
Insulin Resistance
;
Mice
;
NF-kappa B
;
genetics
;
immunology
;
Oxygen
;
metabolism
;
Tumor Necrosis Factor-alpha
;
genetics
;
immunology
;
Xanthones
;
pharmacology
7.Mesua ferrea stem bark extract induces apoptosis and inhibits metastasis in human colorectal carcinoma HCT 116 cells, through modulation of multiple cell signalling pathways.
Muhammad ASIF ; Armaghan SHAFAEI ; Aman Shah ABDUL MAJID ; Mohammed Oday EZZAT ; Saad S DAHHAM ; Mohamed B Khadeer AHAMED ; Chern Ein OON ; Amin Malik Shah ABDUL MAJID
Chinese Journal of Natural Medicines (English Ed.) 2017;15(7):505-514
Considering the great potential of natural products as anticancer agents, the present study was designed to explore the molecular mechanisms responsible for anticancer activities of Mesua ferrea stem bark extract against human colorectal carcinoma. Based on MTT assay results, bioactive sub-fraction (SF-3) was selected for further studies using HCT 116 cells. Repeated column chromatography resulted in isolation of less active α-amyrin from SF-3, which was identified and characterized by GC-MS and HPLC methods. α-amyrin and betulinic acid contents of SF-3 were measured by HPLC methods. Fluorescent assays revealed characteristic apoptotic features, including cell shrinkage, nuclear condensation, and marked decrease in mitochondrial membrane potential in SF-3 treated cells. In addition, increased levels of caspases-9 and -3/7 levels were also observed in SF-3 treated cells. SF-3 showed promising antimetastatic properties in multiple in vitro assays. Multi-pathway analysis revealed significant down-regulation of WNT, HIF-1α, and EGFR with simultaneous up-regulation of p53, Myc/Max, and TGF-β signalling pathways in SF-3 treated cells. In addition, promising growth inhibitory effects were observed in SF-3 treated HCT 116 tumour spheroids, which give a hint about in vivo antitumor efficacy of SF-3 phytoconstituents. In conclusion, these results demonstrated that anticancer effects of SF-3 towards colon cancer are through modulation of multiple molecular pathways.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Colorectal Neoplasms
;
drug therapy
;
metabolism
;
pathology
;
physiopathology
;
ErbB Receptors
;
genetics
;
metabolism
;
HCT116 Cells
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
genetics
;
metabolism
;
Magnoliopsida
;
chemistry
;
Neoplasm Metastasis
;
prevention & control
;
Plant Bark
;
chemistry
;
Plant Extracts
;
pharmacology
;
Signal Transduction
;
drug effects
;
Wnt Proteins
;
genetics
;
metabolism
8.Effects of Omega-3 Fatty Acids on Erectile Dysfunction in a Rat Model of Atherosclerosis-induced Chronic Pelvic Ischemia.
Ji Sung SHIM ; Dae Hee KIM ; Jae Hyun BAE ; Du Geon MOON
Journal of Korean Medical Science 2016;31(4):585-589
The aim of this study was to investigate whether the omega-3 fatty acids help to improve erectile function in an atherosclerosis-induced erectile dysfunction rat model. A total of 20 male Sprague-Dawley rats at age 8 weeks were divided into three groups: Control group (n = 6, untreated sham operated rats), Pathologic group (n = 7, untreated rats with chronic pelvic ischemia [CPI]), and Treatment group (n = 7, CPI rats treated with omega-3 fatty acids). For the in vivo study, electrical stimulation of the cavernosal nerve was performed and erectile function was measured in all groups. Immunohistochemical antibody staining was performed for transforming growth factor beta-1 (TGF-β1), endothelial nitric oxide synthase (eNOS), and hypoxia inducible factor 1-alpha (HIF-1α). In vivo measurement of erectile function in the Pathologic group showed significantly lower values than those in the Control group, whereas the Treatment group showed significantly improved values in comparison with those in the Pathologic group. The results of western blot analysis revealed that systemically administered omega-3 fatty acids ameliorated the cavernosal molecular environment. Our study suggests that omega-3 fatty acids improve intracavernosal pressure and have a beneficial role against pathophysiological consequences such as fibrosis or hypoxic damage on a CPI rat model, which represents a structural erectile dysfunction model.
Animals
;
Atherosclerosis/*complications
;
Blotting, Western
;
Carotid Arteries/physiology
;
Chronic Disease
;
Disease Models, Animal
;
Electric Stimulation
;
Fatty Acids, Omega-3/*pharmacology
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
;
Ischemia/etiology/*pathology
;
Male
;
Nitric Oxide Synthase Type III/metabolism
;
Penile Erection/*drug effects
;
Penis/metabolism/pathology
;
Rats
;
Rats, Sprague-Dawley
;
Transforming Growth Factor beta1/metabolism
9.Effect of jianpi-jiedu formula on tumor angiogenesis-relevant genes expression in colorectal cancer.
Dan MAO ; Sanlin LEI ; Jin'an MA ; Li SHI ; Shaofan ZHANG ; Jianhua HUANG ; Xinyi LIU ; Dengfeng DING ; Yingjin ZHANG ; Lei FENG ; Sifang ZHANG
Journal of Central South University(Medical Sciences) 2016;41(12):1297-1304
To investigate the effect of the jianpi-jiedu formula (JPJD) on the expression of angiogenesis-relevant genes in colon cancer.
Methods: Crude extract was obtained from JPJD by water extract method. The effect of JPJD crude extract on colon cancer cell proliferation capacity was determined by MTT assays. The IC50 value was calculated by GraphPad Prism5 software. Affymetrix gene expression profiling chip was used to detect significant differences in expressions of genes after JPJD intervention, and pathway enrichment analysis was performed to analyze the differentially expressed genes. Ingenuity Pathway Analysis software was applied to analyze differentially expressed genes relevant to tumor angiogenesis based on mammalian target of rapamycin (mTOR) signaling pathway and then the network diagram was built. Western blot was used to verify the protein levels of key genes related to tumor angiogenesis.
Results: JPJD crud extract inhibited the proliferation capacity in colon cancer cells. The IC50 values in 24, 48, and 72 hours after treatment were 13.060, 9.646 and 8.448 mg/mL, respectively. The results of chip showed that 218 genes significantly upgraded, and 252 genes significantly downgraded after JPJD treatment. Most of the genes were related to the function of biosynthesis, metabolism, cell apoptosis, antigen extraction, angiogenesis and so on. There were 12 differentially expressed angiogenesis genes. IPA software analysis showed that the JPJD downregulated expression of sphingomyelin phosphodiesterase 3 (SMPD3), VEGF, vascular endothelial growth factor A (VEGFA), integrin subunit alpha 1 (ITGA1), cathepsin B (CTSB), and cathepsin S (CTSS) genes, while upregulated expressions of GAB2 and plasminogen activator, urokinase receptor (PLAUR) genes in the colorectal cancer cell. Western blot results demonstrated that JPJD obviously downregulated expressions of phospho-mTOR (P-mTOR), signal transducer and activator of transcription 3 (STAT3), hypoxia inducible factor-1α (HIF-1α), and VEGF proteins, while obviously upregulated the level of phospho-P53 (P-P53) protein.
Conclusion: JPJD may inhibit colorectal tumor angiogenesis through regulation of the mTOR-HIF-1α-VEGF signal pathway.
Animals
;
Blotting, Western
;
Cathepsin B
;
drug effects
;
metabolism
;
Cathepsins
;
drug effects
;
metabolism
;
Cell Line, Tumor
;
drug effects
;
Colorectal Neoplasms
;
blood supply
;
genetics
;
Down-Regulation
;
Drugs, Chinese Herbal
;
pharmacology
;
Gene Expression Profiling
;
methods
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit
;
drug effects
;
metabolism
;
Integrin alpha Chains
;
drug effects
;
metabolism
;
Neovascularization, Pathologic
;
genetics
;
Receptors, Urokinase Plasminogen Activator
;
drug effects
;
metabolism
;
STAT3 Transcription Factor
;
drug effects
;
metabolism
;
Signal Transduction
;
Sphingomyelin Phosphodiesterase
;
drug effects
;
metabolism
;
TOR Serine-Threonine Kinases
;
drug effects
;
metabolism
;
Tumor Suppressor Protein p53
;
drug effects
;
metabolism
;
Up-Regulation
;
Vascular Endothelial Growth Factor A
;
drug effects
;
metabolism
10.Resveratrol Inhibits Hypoxia-Induced Vascular Endothelial Growth Factor Expression and Pathological Neovascularization.
Christopher Seungkyu LEE ; Eun Young CHOI ; Sung Chul LEE ; Hyoung Jun KOH ; Joon Haeng LEE ; Ji Hyung CHUNG
Yonsei Medical Journal 2015;56(6):1678-1685
PURPOSE: To investigate the effects of resveratrol on the expression of hypoxia-inducible factor 1alpha (HIF-1alpha) and vascular endothelial growth factor (VEGF) in human adult retinal pigment epithelial (ARPE-19) cells, and on experimental choroidal neovascularization (CNV) in mice. MATERIALS AND METHODS: ARPE-19 cells were treated with different concentrations of resveratrol and then incubated under hypoxic conditions with subsequent evaluation of cell viability, expression of HIF-1alpha, and expression of VEGF. The effects of resveratrol on the synthesis and degradation of hypoxia-induced HIF-1alpha were evaluated using inhibitors of the PI3K/Akt/mTOR and the ubiquitin proteasome pathways. In animal studies, CNV lesions were induced in C57BL/6 mice by laser photocoagulation. After 7 days of oral administration of resveratrol or vehicle, which began one day after CNV induction, image analysis was used to measure CNV areas on choroidal flat mounts stained with isolectin IB4. RESULTS: In ARPE-19 cells, resveratrol significantly inhibited HIF-1alpha and VEGF in a dose-dependent manner, by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1alpha degradation. In mice experiments, orally administered resveratrol significantly inhibited CNV growth in a dose-dependent manner. CONCLUSION: Resveratrol may have therapeutic value in the management of diseases involving pathological neovascularization.
Adult
;
Animals
;
Anoxia/metabolism/physiopathology
;
Cell Survival/drug effects
;
Choroidal Neovascularization/*metabolism/pathology
;
Humans
;
Hypoxia-Inducible Factor 1, alpha Subunit/*drug effects/metabolism
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/antagonists & inhibitors/*physiology
;
Proteasome Endopeptidase Complex
;
Proto-Oncogene Proteins c-akt/antagonists & inhibitors/*physiology
;
Retinal Pigment Epithelium/*drug effects/metabolism
;
Signal Transduction
;
Stilbenes/administration & dosage/*pharmacology
;
TOR Serine-Threonine Kinases/antagonists & inhibitors/*physiology
;
Ubiquitin
;
Vascular Endothelial Growth Factor A/*drug effects/metabolism

Result Analysis
Print
Save
E-mail