1.Lipid-lowering activity of Panax notoginseng flowers and rhizomes on hyperlipidemia rats based on chemical composition similarity.
Meng YE ; Jin-Wen MA ; Hai-Yue ZHONG ; Yu-Ling XU
China Journal of Chinese Materia Medica 2025;50(3):776-786
Based on the similarity of chemical constituents between Panax notoginseng flowers and rhizomes, this study investigated their lipid-lowering effects and impacts on the intestinal flora of rats. The main components of P. notoginseng flowers and rhizomes were detected by ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UHPLC-Q-TOF-MS) to compare their chemical similarities. A hyperlipidemia rat model was induced using a high-fat diet. After successful modeling, the rats were divided into the blank control group, blank administration group(0.090 g·kg~(-1)), model group, low-(0.045 g·kg~(-1)), medium-(0.090 g·kg~(-1)), high-dose(0.180 g·kg~(-1)) P. notoginseng flower group, P. notoginseng rhizome group(0.270 g·kg~(-1)), and simvastatin group(0.900 mg·kg~(-1)). After modeling, the rats were given intragastric administration for 3 weeks, once daily, while their body weight was recorded regularly. Before the last administration, fresh feces were collected for analysis of changes in intestinal flora using 16S rDNA high-throughput sequencing technology. One hour after the last administration, the rats were anesthetized with 1% pentobarbital sodium, and blood was collected from the abdominal aorta. Serum biochemical indexes were detected using an automatic biochemical analyzer. Organs(heart, liver, spleen, lung, and kidney) were harvested, and organ index were calculated. Liver tissue pathology was assessed through HE staining and oil red O staining. The results indicated that there were 33 identical chemical constituents in P. notoginseng flowers and rhizomes, accounting for 75.00% of the total constituents. After treatment, high-dose P. notoginseng flower group and P. notoginseng rhizome group exhibited similar effects on body weight, serum biochemical indexes, and liver histopathological conditions. Compared with model control group, the abundance of Firmicutes and Actinobacteria increased in high-dose P. notoginseng flower and rhizome groups, while the abundance of Bacteroidetes and Thermodesulfobacteria decreased. Cluster analysis showed no significant difference between the two groups. Both P. notoginseng flowers and rhizomes possess similar chemical components and lipid-lowering effects, and they can regulate the intestinal flora imbalance caused by hyperlipidemia, indicating their potential for use in hyperlipidemia treatment.
Animals
;
Hyperlipidemias/microbiology*
;
Panax notoginseng/chemistry*
;
Rats
;
Rhizome/chemistry*
;
Male
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
;
Liver/drug effects*
2.Hypolipidemic effect and mechanism of Arisaema Cum Bile based on gut microbiota and metabolomics.
Peng ZHANG ; Fa-Zhi SU ; En-Lin ZHU ; Chen-Xi BAI ; Bao-Wu ZHANG ; Yan-Ping SUN ; Hai-Xue KUANG ; Qiu-Hong WANG
China Journal of Chinese Materia Medica 2025;50(6):1544-1557
Based on the high-fat diet-induced hyperlipidemia rat model, this study aimed to evaluate the lipid-lowering effect of Arisaema Cum Bile and explore its mechanisms, providing experimental evidence for its clinical application. Biochemical analysis was used to detect serum levels of alanine aminotransferase(ALT), aspartate aminotransferase(AST), high-density lipoprotein cholesterol(HDL-C), low-density lipoprotein cholesterol(LDL-C), triglycerides(TG), and total cholesterol(TC) to assess the lipid-lowering activity of Arisaema Cum Bile. Additionally, 16S rDNA sequencing and metabolomics techniques were employed to jointly elucidate the lipid-lowering mechanisms of Arisaema Cum Bile. The experimental results showed that high-dose Arisaema Cum Bile(PBA-H) significantly reduced serum ALT, AST, LDL-C, TG, and TC levels(P<0.01), and significantly increased HDL-C levels(P<0.01). The effect was similar to that of fenofibrate, with no significant difference. Furthermore, Arisaema Cum Bile significantly alleviated hepatocyte ballooning and mitigated fatty degeneration in liver tissues. As indicated by 16S rDNA sequencing results, PBA-H significantly enhanced both alpha and beta diversity of the gut microbiota in the model rats, notably increasing the relative abundance of Akkermansia and Subdoligranulum species(P<0.01). Liver metabolomics analysis revealed that PBA-H primarily regulated pathways involved in arachidonic acid metabolism, vitamin B_6 metabolism, and steroid biosynthesis. In summary, Arisaema Cum Bile significantly improved abnormal blood lipid levels and liver pathology induced by a high-fat diet, regulated hepatic metabolic disorders, and improved the abundance and structural composition of gut microbiota, thereby exerting its lipid-lowering effect. The findings of this study provide experimental evidence for the clinical application of Arisaema Cum Bile and the treatment of hyperlipidemia.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Metabolomics
;
Hyperlipidemias/microbiology*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Hypolipidemic Agents/pharmacology*
;
Liver/metabolism*
;
Humans
;
Alanine Transaminase/metabolism*
;
Triglycerides/metabolism*
;
Aspartate Aminotransferases/metabolism*
3.The relationship between illnesses and medical drug consumption with the occurrence of traffic accidents among truck and bus drivers in Tehran, Iran.
Amir Hossein KHOSHAKHLAGH ; Saeid YAZDANIRAD ; Fereydoon LAAL ; Vali SARSANGI
Chinese Journal of Traumatology 2019;22(3):142-147
PURPOSE:
To determine the relationship of illnesses and medical drug consumption with the occurrence of traffic accidents among truck and bus drivers.
METHODS:
This is a cross-sectional study on truck and bus drivers in Tehran, Iran. The criteria for participating in this study were: married males over 30 years old, driving license in grade one, five years of job experience, mental health and non-addiction license. The criterion for not participating in this study was the lack of cooperation in responding to the questions. Six months was spent to collect the latest five years data of driving accidents from 2011 to 2016. A total of 323 truck and bus drivers in Tehran city and the suburbs, Iran were chosen. Among them, 112 were responsible for accidents (accident group) while 211 were not responsible for any accidents or involved in an accident in the last five years (non-accident group). A specially designed questionnaire was used to investigate the demographic information, medical drug consumption, medical backgrounds and history of accidents.
RESULTS:
The results revealed that compared with healthy subjects, the occurrence of accidents among people with diabetes (OR = 2.3, p = 0.001) and vision weakness (OR = 1.7, p = 0.020) was significantly higher, while that among people with cardiac (OR = 0.5, p = 0.002) and hypertension (OR = 0.9, p = 0.048) problems was remarkably lower. Moreover, consumption of Gemfibrozil (OR = 1.8, p = 0.010) and Glibenclamide (OR = 2.2, p = 0.002) drugs resulted in significantly higher incidence of accidents than those without.
CONCLUSION
Frequencies of illnesses like cardiovascular and hypertension were not higher in accident drivers than in non-accident drivers; but diabetes, vision weakness and consumption of Gemfibrozil and Glibenclamide lead to more traffic accidents.
Accidents, Traffic
;
statistics & numerical data
;
Adult
;
Automobile Driving
;
statistics & numerical data
;
Cross-Sectional Studies
;
Diabetes Mellitus
;
epidemiology
;
Drug Utilization
;
statistics & numerical data
;
Gemfibrozil
;
administration & dosage
;
Glyburide
;
administration & dosage
;
Humans
;
Hypolipidemic Agents
;
administration & dosage
;
Incidence
;
Iran
;
epidemiology
;
Male
;
Middle Aged
;
Surveys and Questionnaires
;
Vision Disorders
;
epidemiology
4.Phytochemical characterization of polyphenolic compounds with HPLC-DAD-ESI-MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats.
Omar FARID ; Farid KHALLOUKI ; Morad AKDAD ; Andrea BREUER ; Robert Wyn OWEN ; Mohamed EDDOUKS
Journal of Integrative Medicine 2018;16(3):185-191
OBJECTIVEAnabasis aretioides (Coss & Moq.), a Saharan plant belonging to Chenopodiaceae family, is widely distributed in semi-desert areas from the Tafilalet region of Morocco. This plant is extensively used by local population against diabetes and cardiovascular disorders. The purpose of the study was to investigate the effect of the aqueous A. aretioides extract on lipid metabolism in normal and streptozotocin (STZ)-induced diabetic rats and to identify the polyphenolic compounds present. In addition, the in vitro antioxidant activity of the aqueous A. aretioides extract was also evaluated.
METHODSThe effect of an aerial part aqueous extract (APAE) of A. aretioides (5 mg/kg of lyophilized A. aretioides APAE) on plasma lipid profile was investigated in normal and STZ-induced diabetic rats (n = 6) after once daily oral administration for 15 days. The aqueous extract was tested for its 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity. Polyphenolic compounds in the extracts were definitively characterized by high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry.
RESULTSIn diabetic rats, oral administration of A. aretioides APAE provoked a significant decrease in both plasma cholesterol and triglyceride levels from the first to the second week (P < 0.01). A significant decrease on plasma triglyceride levels was also observed in normal rats (P < 0.01), where the reduction was 53%. In addition, the phytochemical analysis revealed the presence of 12 polyphenolic compounds. Moreover, according to the DPPH radical-scavenging activity, the aqueous extract showed an in vitro antioxidant activity.
CONCLUSIONAqueous A. aretioides APAE exhibits lipid-lowering and in vitro antioxidant activities. Many polyphenols were present in this extract and these phytoconstituents may be involved in the pharmacological activity of this plant.
Animals ; Antioxidants ; administration & dosage ; Chenopodiaceae ; chemistry ; Cholesterol ; blood ; Chromatography, High Pressure Liquid ; Diabetes Mellitus, Experimental ; blood ; drug therapy ; Humans ; Hypolipidemic Agents ; administration & dosage ; chemistry ; Male ; Phytochemicals ; administration & dosage ; chemistry ; Plant Extracts ; administration & dosage ; chemistry ; Polyphenols ; administration & dosage ; chemistry ; Rats ; Rats, Wistar ; Streptozocin ; Tandem Mass Spectrometry ; Triglycerides ; blood
5.Effects of sera of rats fed with tablets on endoplasmic reticulum stress in a HepG2 cell model of nonalcoholic fatty liver disease.
Miaoting YANG ; Zhijuan CHEN ; Chunxin XIAO ; Waijiao TANG ; Beijie ZHOU
Journal of Southern Medical University 2018;38(11):1277-1287
OBJECTIVE:
To investigate the effects of sera from rats fed with tablets (HGT) on endoplasmic reticulum (ER) stress in a steatotic hepatocyte model of free fatty acids (FFAs)-induced nonalcoholic fatty liver disease (NAFLD) and explore the possible mechanism.
METHODS:
FFAs prepared by mixing oleic acid and palmitic acid at the ratio of 2:1. HepG2 cells were treated with the sera from rats fed with low-, moderate-or high-dose HGT (HGT sera) or sera of rats fed with fenofibrate (fenofibrate sera), followed by treatment with 1 mmol/L FFAs for 24 h to induce hepatic steatosis. Oil red O staining was used to observe the distribution of lipid droplets in the cells. The biochemical parameters including triglyceride (TG), lactated hydrogenase (LDH), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured using a commercial kit. The morphological changes of the ER in the cells were observed using transmission electron microscopy. The protein/mRNA expressions of ER stress-related signal molecules including GRP78, PERK, p-PERK, ATF6, ATF4, CASPASE-12, CHOP, XBP-1, PKC, and p-PKC-δ were detected using Western blotting and/or quantitative real-time PCR (qRT-PCR). The changes in the protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP were also detected in cells with transient transfection of PKC-δ siRNA for PKC-δ knockdown.
RESULTS:
Compared with the control cells, the cells treated with FFAs showed significantly increased levels of TG, AST, and ALT ( < 0.05). Compared with FFAs-treated cells, the cells pretreated with HGT sera or fenofibrate sera all showed significantly decreased TG, AST and ALT levels ( < 0.05), reduced accumulation of the lipid droplets ( < 0.05), and lowered protein or mRNA expression levels of GRP78, p-PERK, ATF6, ATF4, CHOP, CASPASE-12, XBP-1 and p-PKC-δ ( < 0.05). PKC-δ knockdown caused significantly reduced protein expressions of GRP78, p-PERK, CASPASE-12 and CHOP in the cells with FFA-induced hepatic steatosis ( < 0.001); treatment with high-dose HGT serum more significantly reduced the expressions of GRP78 ( < 0.001) and P-PERK ( < 0.01) in FFAs-induced cells with PKC-δ knockdown.
CONCLUSIONS
HGT serum can effectively prevent FFAs-induced steatosis in HepG2 cells by alleviating ER stress, in which PKC-δ may act as an important target.
Alanine Transaminase
;
blood
;
Animals
;
Aspartate Aminotransferases
;
blood
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
Endoplasmic Reticulum
;
ultrastructure
;
Endoplasmic Reticulum Stress
;
drug effects
;
Fatty Acids, Nonesterified
;
Fenofibrate
;
administration & dosage
;
Hep G2 Cells
;
Humans
;
Hypolipidemic Agents
;
administration & dosage
;
Microscopy, Electron, Transmission
;
Non-alcoholic Fatty Liver Disease
;
blood
;
etiology
;
prevention & control
;
RNA, Messenger
;
blood
;
Rats
;
Serum
;
Tablets
;
Triglycerides
;
blood
6.Hypolipidemic effect of SIPI-7623, a derivative of an extract from oriental wormwood, through farnesoid X receptor antagonism.
Yi-Fang DENG ; Xiao-Ling HUANG ; Mei SU ; Peng-Xia YU ; Zhen ZHANG ; Quan-Hai LIU ; Guo-Ping WANG ; Min-Yu LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):572-579
Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand-activated transcription factors. As a metabolic regulator, FXR plays key roles in bile acid and cholesterol metabolism and lipid and glucose homeostasis. Therefore, FXR is a potential drug target for several metabolic syndromes, especially those related to lipidemia disorders. In the present study, we identified small molecule SIPI-7623, a derivative of an extract from Oriental wormwood (Artemisia capillaris), and found that it specifically upregulated the expression of cholesterol-7-alpha-hydroxylase (CYP7A1), downregulated the expression of sterol-regulatory element-binding protein 1c (SREBP-1c) in the liver, and inhibited the expression of ileal bile acid binding-protein (IBABP) in the ileum of rats. We found that inhibition of FXR by SIPI-7623 decreased the level of cholesterol and triglyceride. SIPI-7623 reduced the levels of cholesterol and triglyceride in in vitro HepG2 cell models, ameliorated diet-induced atherosclerosis, and decreased the serum lipid content on rats and rabbits model of atherosclerosis in vivo. Furthermore, SIPI-7623 decreased the extent of atherosclerotic lesions. Our resutls demonstrated that antagonism of the FXR pathway can be employed as a therapeutic strategy to treat metabolic diseases such as hyperlipidemia and atherosclerosis. In conclusion, SIPI-7623 could be a promising lead compound for development of drugs to treat hyperlipidemia and atherosclerosis.
Animals
;
Artemisia
;
chemistry
;
Atherosclerosis
;
drug therapy
;
genetics
;
metabolism
;
Cholesterol
;
metabolism
;
Cholesterol 7-alpha-Hydroxylase
;
genetics
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
Liver
;
drug effects
;
metabolism
;
Male
;
Rabbits
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Cytoplasmic and Nuclear
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Sterol Regulatory Element Binding Protein 1
;
genetics
;
metabolism
;
Triglycerides
;
metabolism
7.Antihyperglycemic, antihyperlipidemic and antioxidant effects of standard ethanol extract of Bombax ceiba leaves in high-fat-diet- and streptozotocin-induced Type 2 diabetic rats.
Guang-Kai XU ; Xiao-Ying QIN ; Guo-Kai WANG ; Guo-Yong XIE ; Xu-Sen LI ; Chen-Yu SUN ; Bao-Lin LIU ; Min-Jian QIN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(3):168-177
The present study aimed at exploring the therapeutic potential of standard extract of Bombax ceiba L. leaves (BCE) in type 2 diabetic mellitus (T2DM). Oral administration of BCE at doses of 70, 140, and 280 mg·kg, to the normal rats and the high-fat-diet- and streptozotocin-induced T2DM rats were carried out. Effects of BCE on blood glucose, body weight, and a range of serum biochemical parameters were tested, and histopathological observation of pancreatic tissues was also performed. HPLC-ESI-Q/TOF-MS/MS analysis indicated that the chemical composition of BCE mainly contained mangiferin, isoorientin, vitexin, isomangiferin, isovitexin, quercetin hexoside, 2'-trans-O-cumaroyl mangiferin, and nigricanside. BCE caused a significant decrease in the concentrations of fasting blood glucose, glycosylated hemoglobin, total cholesterol, triglyceride, low density lipoprotein-cholesterol, serum insulin, and malondialdehyde, and increases in oral glucose tolerance, high density lipoprotein-cholesterol, and superoxide dismutase in the T2DM model rats. Moreover, considerable pancreatic β-cells protection effect and stimulation of insulin secretion from the remaining pancreatic β-cells could be observed after BCE treatment. The results indicated that BCE exhibited an excellent hypoglycemic activity, and alleviated dyslipidemia which is associated with T2DM. Antioxidant activity and protecting pancreatic β-cells are the possible mechanisms involved in anti-diabetic activity of BCE.
Animals
;
Antioxidants
;
administration & dosage
;
chemistry
;
isolation & purification
;
Blood Glucose
;
metabolism
;
Bombax
;
chemistry
;
Diabetes Mellitus, Type 2
;
drug therapy
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
chemistry
;
isolation & purification
;
Hypolipidemic Agents
;
administration & dosage
;
chemistry
;
isolation & purification
;
Male
;
Plant Extracts
;
administration & dosage
;
chemistry
;
isolation & purification
;
Plant Leaves
;
chemistry
;
Rats
;
Rats, Sprague-Dawley
8.Study on mechanism for anti-hyperlipidemia efficacy of rhubarb through assistant analysis systems for acting mechanisms of traditional Chinese medicine.
Li DU ; Bin YUAN ; Bai-xia ZHANG ; Yan-ling ZHANG ; Xiao-yan GAO ; Yun WANG
China Journal of Chinese Materia Medica 2015;40(19):3703-3708
Rhubarb is a traditional Chinese medicine (TCM), wildly used in treating the disease of hyperlipidemia. However, its components are complicated, so that it is still difficult to clear the specific roles of its various components in blood lipids regulation in. So we decide to systematically study the anti- hyperlipidemia mechanism of rhubarb. We integrated multiple databases, based on entity grammar systems model, constructed molecular interaction network between the chemical constituents of rhubarb and hyperlipidemia. The network includes 231 nodes and 638 edges. Thus we infer the interactions of active targets and disease targets to clarify the anti-hyperlipidemia mechanism. And find that rhubarb can promote excretion of cholesterol; inhibit clotting factors and improve blood circulation; inhibit the release of inflammatory cytokines and maintain fat metabolism balance; inhibit cholesterol and triglyceride synthesis; and other ways to achieve lipid-lowering effect. Thus this study provides reference for novel drug development and component compatibility, and also gives a new way for the systematically study of acting mechanism of traditional Chinese medicine.
Animals
;
Databases, Factual
;
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Gene Regulatory Networks
;
drug effects
;
Humans
;
Hyperlipidemias
;
drug therapy
;
genetics
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
chemistry
;
Lipid Metabolism
;
Rheum
;
chemistry
;
Signal Transduction
;
drug effects
9.Effects of simvastatin on the proliferation and apoptosis of prostatic epithelial RWPE-1 cells.
Ming-gen YANG ; Zhou-da ZHENG ; Hai-li LIN ; Zhi-ming ZHUANG ; Tian-qi LIN
National Journal of Andrology 2015;21(2):113-118
OBJECTIVETo investigate the effects of simvastatin on the proliferation and apoptosis of prostatic epithelial RWPE-1 cells.
METHODSRWPE-1 cells cultured in vitro were treated with simvastatin at 0, 10, 20, and 40 μmol/L for 24, 48, and 72 hours followed by determination of their proliferation by MTT assay, and their apoptosis by flow cytometry. The mRNA and protein expressions of Bcl-2, Bax, and Cx43 were detected by fluorescence quantitative RT-PCR and Western blot, respectively.
RESULTSAfter 72 hours of treatment with simvastatin at 10, 20, and 40 μmol/L, the inhibition rates of the RWPE-1 cells were (21.07 ± 6.41)%, (34.87 ± 9.65)%, and (47.18 ± 10.88)%, respectively, significantly higher than (1.21 ± 0.54)% in the control group (P < 0.05) and in a dose-dependent manner (P < 0.05); the cell apoptosis rates were (0.066 ± 0.016)%, (0.126 ± 0.023)%, and (0.192 ± 0.025)%, respectively, remarkably higher than (0.015 ± 0.005)% in the control (P < 0.05) and also in a dose-dependent manner (P < 0.05); the mRNA and protein expressions of Bcl-2 were decreasing while those of Bax and Cx43 increasing with the increased concentration of simvastatin (P < 0.05). The expression of Cx43 was correlated negatively with that of Bcl-2 but positively with that of Bax.
CONCLUSIONSimvastatin inhibits the proliferation of prostate epithelial cells and induce their apoptosis by acting on the gap junctional intercellular communication.
Apoptosis ; drug effects ; Cell Proliferation ; drug effects ; Connexin 43 ; metabolism ; Drug Administration Schedule ; Epithelial Cells ; drug effects ; physiology ; Humans ; Hypolipidemic Agents ; pharmacology ; Male ; Prostate ; cytology ; Proto-Oncogene Proteins c-bcl-2 ; metabolism ; RNA, Messenger ; metabolism ; Simvastatin ; pharmacology ; bcl-2-Associated X Protein ; metabolism
10.Efficient and rapid liquid reduction animal model.
Bing HAN ; Shu-ming KOU ; Biao CHEN ; Yao-zong PENG ; Yue WANG ; Yu-long HAN ; Xiao-li YE ; Xue-gang LI
China Journal of Chinese Materia Medica 2015;40(22):4446-4451
To investigate the practicability of establishing zebrafish lipid-lowering drug screening model and the effect of berberine (BBR) on hyperlipidemic zebrafish. Three-month-old zebrafishes were fed with 4% cholesterol for 0, 2, 4, 8, 14, 20, 25, 30 days, and the level of total cholesterol in serum was measured. Zebrafish were randomly divided into four groups: the control group, the high cholesterol diet group, the 0.01% simvastatin-treated group, the 0.1% berberine-treated group and the 0.2% berberine-treated group. The levels of total cholesterol (TC), triglyceride (TC), low density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) in serum were measured; the expression of hepatic HMGCR, LDLR and CYP7A1a mRNA expressions were detected by real time PCR. Oil red O staining was performed to observe the changes in fat content in the liver. According to the result, the level of serum TC in the 4% cholesterol diet group significantly was higher than that of the normal control group in a time-dependent manner and reached a stable level at the 20th day. The BBR group showed significant decreases in the levels of TC, TG and LDL-c, HMGCR mRNA expression and fat content and increases in LDLR and CYP7A1a mRNA. The hyperlipidemia zebrafish model was successfully established by feeding with 4% cholesterol for 20 days. The findings lay a foundation for further screenings on lipid-lowering drugs.
Animals
;
Berberine
;
administration & dosage
;
Cholesterol
;
metabolism
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
administration & dosage
;
Female
;
Humans
;
Hyperlipidemias
;
drug therapy
;
metabolism
;
Hypolipidemic Agents
;
administration & dosage
;
Liver
;
drug effects
;
metabolism
;
Male
;
Triglycerides
;
metabolism
;
Zebrafish
;
metabolism

Result Analysis
Print
Save
E-mail