1.2,3-Seco and 3-nor guaianolides fromAchillea alpina with antidiabetic activity.
Guimin XUE ; Chenguang ZHAO ; Jinfeng XUE ; Jiangjing DUAN ; Hao PAN ; Xuan ZHAO ; Zhikang YANG ; Hui CHEN ; Yanjun SUN ; Weisheng FENG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(8):610-618
In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.
Humans
;
Hypoglycemic Agents/pharmacology*
;
Circular Dichroism
;
Cytokines
;
Glucose
;
Hep G2 Cells
;
Insulin Resistance
2.The development and benefits of metformin in various diseases.
Ying DONG ; Yingbei QI ; Haowen JIANG ; Tian MI ; Yunkai ZHANG ; Chang PENG ; Wanchen LI ; Yongmei ZHANG ; Yubo ZHOU ; Yi ZANG ; Jia LI
Frontiers of Medicine 2023;17(3):388-431
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Humans
;
Metformin/pharmacokinetics*
;
Diabetes Mellitus, Type 2/metabolism*
;
Hypoglycemic Agents/pharmacology*
;
AMP-Activated Protein Kinases/metabolism*
;
Aging
3.A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications.
Anusree DASNANDY ; Rajashri VIRGE ; Harsha V HEGDE ; Debprasad CHATTOPADHYAY
Journal of Integrative Medicine 2023;21(3):226-235
Diabetes mellitus is a chronic disease, typified by hyperglycemia resulting from failures in complex multifactorial metabolic functions, that requires life-long medication. Prolonged uncontrolled hyperglycemia leads to micro- and macro-vascular complications. Although antidiabetic drugs are prescribed as the first-line treatment, many of them lose efficacy over time or have severe side effects. There is a lack of in-depth study on the patents filed concerning the use of natural compounds to manage diabetes. Thus, this patent analysis provides a comprehensive report on the antidiabetic therapeutic activity of 6 phytocompounds when taken alone or in combinations. Four patent databases were searched, and 17,649 patents filed between 2001 and 2021 were retrieved. Of these, 139 patents for antidiabetic therapeutic aids that included berberine, curcumin, gingerol, gymnemic acid, gymnemagenin and mangiferin were analyzed. The results showed that these compounds alone or in combinations, targeting acetyl-coenzyme A carboxylase 2, serine/threonine protein kinase, α-amylase, α-glucosidase, lipooxygenase, phosphorylase, peroxisome proliferator-activated receptor-γ (PPARγ), protein tyrosine phosphatase 1B, PPARγ co-activator-1α, phosphoinositide 3-kinase and protein phosphatase 1 regulatory subunit 3C, could regulate glucose metabolism which are validated by pharmacological rationale. Synergism, or combination therapy, including different phytocompounds and plant extracts, has been studied extensively and found effective, whereas the efficacy of commercial drugs in combination with phytocompounds has not been studied in detail. Curcumin, gymnemic acid and mangiferin were found to be effective against diabetes-related complications. Please cite this article as: DasNandy A, Virge R, Hegde HV, Chattopadhyay D. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications. J Integr Med. 2023; 21(3): 226-235.
Humans
;
PPAR gamma/metabolism*
;
Curcumin/therapeutic use*
;
Phosphatidylinositol 3-Kinases
;
Diabetes Mellitus/drug therapy*
;
Hypoglycemic Agents/pharmacology*
;
Hyperglycemia/drug therapy*
;
Glucose
4.Hypoglycemic mechanism of Psoraleae Fructus and its main chemical constituents.
Ping-Ping LIN ; Ming-Zhu CHEN ; Yin ZHANG
China Journal of Chinese Materia Medica 2022;47(9):2392-2399
With the rise of incidence, fatality rate, and number of young cases, diabetes mellitus has been one of the seven major diseases threatening human health. Although many antidiabetic drugs(oral or for injection) are available, the majority have serious side effects during the long-term use. Thus, it is of particularly vital to develop new drugs with low risk and definite effect. Psoraleae Fructus, a traditional medicinal widely used in the folk, has hypoglycemic, anti-osteoporosis, antitumor, estrogen-like, and anti-inflammatory effects. Thus, it has great clinical application potential. Chinese medicine and the active ingredients, characterized by multiple targets, multiple pathways, and multiple effects in the treatment of diabetes mellitus, have distinct advantages in clinical application. However, the safety of Chinese medicine remains to be a challenge, and one of keys is to clarifying the mechanism of a single Chinese medicinal and its active ingredients. With the method of literature research, this study summarized and analyzed the hypoglycemic mechanisms of Psoraleae Fructus and its main active ingredients over the last decade: regulating glucose metabolism, improving insulin resistance, and directly acting on pancreatic β-cells. The result is expected to serve as a reference for further research on the effects of Psoraleae Fructus and its main chemical constituents in lowering blood glucose and preventing diabetes mellitus and the clinical application.
Drugs, Chinese Herbal/pharmacology*
;
Fruit/chemistry*
;
Humans
;
Hypoglycemic Agents/pharmacology*
;
Osteoporosis/drug therapy*
;
Psoralea/chemistry*
5.Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity.
Qiang LI ; Qimeng YANG ; Jing HAN ; Xiaohan LIU ; Junjie FU ; Jian YIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):863-872
Peptide dual agonists toward both glucagon-like peptide 1 receptor (GLP-1R) and glucagon receptor (GCGR) are emerging as novel therapeutics for the treatment of type 2 diabetes mellitus (T2DM) patients with obesity. Our previous work identified a Xenopus GLP-1-based dual GLP-1R/GCGR agonist termed xGLP/GCG-13, which showed decent hypoglycemic and body weight lowering activity. However, the clinical utility of xGLP/GCG-13 is limited due to its short in vivo half-life. Inspired by the fact that O-GlcNAcylation of intracellular proteins leads to increased stability of secreted proteins, we rationally designed a panel of O-GlcNAcylated xGLP/GCG-13 analogs as potential long-acting GLP-1R/ GCGR dual agonists. One of the synthesized glycopeptides 1f was found to be equipotent to xGLP/GCG-13 in cell-based receptor activation assays. As expected, O-GlcNAcylation effectively improved the stability of xGLP/GCG-13 in vivo. Importantly, chronic administration of 1f potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, and normalized lipid metabolism and adiposity in both db/db and diet induced obesity (DIO) mice models. These results supported the hypothesis that glycosylation is a useful strategy for improving the in vivo stability of GLP-1-based peptides and promoted the development of dual GLP-1R/GCGR agonists as antidiabetic/antiobesity drugs.
Mice
;
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Receptors, Glucagon/therapeutic use*
;
Xenopus laevis/metabolism*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glycopeptides/therapeutic use*
;
Obesity/drug therapy*
;
Hypoglycemic Agents/pharmacology*
;
Peptides/pharmacology*
6.Research progress and analysis on mechanism of polysaccharides against type 2 diabetes mellitus.
Fu-Jun LIU ; Xiao-Ying LIU ; Yu MA ; Wei-Lan WANG ; Jin-Yao LI
China Journal of Chinese Materia Medica 2021;46(3):552-559
Polysaccharides are macromolecular compounds formed by more than 10 monosaccharide molecules linked by glycosidic bonds. Polysaccharides have a wide range of sources, high safety and low toxicity, with a variety of biological activities, such as anti-tumor, anti-virus, immune regulation, lowering blood glucose, and lowering blood lipids. Type 2 diabetes mellitus(T2 DM) is a chronic metabolic disorder characterized by hyperglycemia, insulin resistance and low inflammation. In recent years, the treatment of T2 DM with polysaccharide has become a research hotspot. Polysaccharides can not only make up for the side effects such as hypoglycemia, weight gain, gastrointestinal injury caused by long-term treatment of acarbose, biguanidine and sulfonylurea, but also play an effective role in reducing glucose by regulating glucose metabolism, oxidative stress, inflammatory response, intestinal flora, etc. In this paper, the research progress of polysaccharides in the treatment of T2 DM was reviewed. In addition, the hot spots such as the hypoglycemic activity of polysaccharides with structural modifications were summarized, providing theoretical guidance for the development of active polysaccharide hypoglycemic medicines and the further study of action mechanism.
Blood Glucose
;
Diabetes Mellitus, Type 2/drug therapy*
;
Humans
;
Hypoglycemic Agents/pharmacology*
;
Insulin Resistance
;
Polysaccharides
7.Research progress on chemical constituents and pharmacological activities of Trigonella foenum-graecum.
Yan-Feng HE ; Hong-Ting MA ; Rui-Nan WANG ; Peng-Cheng LIN ; Hong-Lun WANG
China Journal of Chinese Materia Medica 2021;46(16):4069-4082
Trigonella foenum-graecum is an annual plant of the genus Trigonella in the Leguminosae family. It is widely distributed in China and has a long history of application. According to phytochemistry research, the seeds, stem, and leaves of this herb contain not only a variety of bioactive ingredients, including alkaloids, saponins, polysaccharides, flavonoids, and phenols, but also abundant nutrients such as unsaturated fatty acids and amino acids and various trace elements. Pharmacological studies have shown that both the extract of T. foenum-graecum and its chemical constituents exhibit hypoglycemic, hypolipidemic, antitumor, antioxidative, antimicro-bial, and hepatoprotective activities. This paper reviews the research progress on the chemical constituents and pharmacological effects of T. foenum-graecum, which may contribute to further development, application, and clinical research of this herb.
Antioxidants/pharmacology*
;
Hypoglycemic Agents
;
Plant Extracts/pharmacology*
;
Seeds
;
Trigonella
8.Pterostilbene Ameliorates Renal Damage in Diabetic Rats by Suppressing Hyperglycemia with Inhibition of Inflammatory and Fibrotic Responses.
Run Rong DING ; Guo Yu HUANG ; Yu Jing ZHANG ; Hua Lei SUN ; Yi Ming LIU ; Ze XU ; Wen Jie LI ; Xing LI
Biomedical and Environmental Sciences 2021;34(12):1015-1019
9.Effects of antihyperglycemics on endothelial progenitor cells.
Xue HAN ; Guojun JIANG ; Qiaojuan SHI
Journal of Zhejiang University. Medical sciences 2020;49(5):629-636
Endothelial progenitor cells (EPCs) play an important role in diabetic vascular complications. A large number of studies have revealed that some clinical antihyperglycemics can improve the complications of diabetes by regulating the function of EPCs. Metformin can improve EPCs function in diabetic patients by regulating oxidative stress level or downstream signaling pathway of adenosine monophosphate activated protein kinase; Pioglitazone can delay the aging of EPCs by regulating telomerase activity; acarbose, sitagliptin and insulin can promote the proliferation, migration and adhesion of EPCs. In addition to lowering blood glucose, the effects of antihyperglycemics on EPCs may also be one of the mechanisms to improve the complications of diabetes. This article reviews the research progress on the regulation of EPC proliferation and function by antihyperglycemics.
Cell Movement/drug effects*
;
Cells, Cultured
;
Endothelial Progenitor Cells/drug effects*
;
Humans
;
Hypoglycemic Agents/pharmacology*
;
Signal Transduction/drug effects*
10.Regulatory mechanisms and therapeutic potential of microglial inhibitors in neuropathic pain and morphine tolerance.
Er-Rong DU ; Rong-Ping FAN ; Li-Lou RONG ; Zhen XIE ; Chang-Shui XU
Journal of Zhejiang University. Science. B 2020;21(3):204-217
Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.
Humans
;
Calcitonin Gene-Related Peptide/antagonists & inhibitors*
;
Drug Tolerance
;
Hypoglycemic Agents/pharmacology*
;
Microglia/physiology*
;
MicroRNAs/physiology*
;
Minocycline/pharmacology*
;
Morphine/pharmacology*
;
Neuralgia/etiology*
;
Plant Extracts/pharmacology*
;
Signal Transduction/physiology*

Result Analysis
Print
Save
E-mail