1.Two pairs of phloroglucinol enantiomers from Hypericum wightianum and their stereochemical structures.
Rui-Fei ZHANG ; Yan-Xiao FAN ; Yuan-Yuan JI ; Chun-Lin LONG
China Journal of Chinese Materia Medica 2023;48(2):421-429
The chemical constituents in the ethanol extract of Hypericum wightianum(Hypericaceae) were purified by column chromatography and identified via magnetic resonance imaging(NMR), high-resolution mass spectrum, and circular dichroism. A total of 22 compounds were identified, including eight polyprenylated phloroglucinols(1-8), three chromones(9-11), and three terpenoids(14-16) and so on. Among them, compounds 16 and 17 were first reported in the genus Hypericum, and compounds 1-11, 14, 15, and 19 were first isolated from H. wightianum. Compounds 1-4 were previously reported as two pairs of enantiomers. This study reported the chiral resolutions and absolute configurations of compounds 1-4 for the first time.
Phloroglucinol
;
Hypericum/chemistry*
;
Molecular Structure
;
Magnetic Resonance Spectroscopy
;
Drugs, Chinese Herbal/chemistry*
2.Bioassay-guided isolation of α-Glucosidase inhibitory constituents from Hypericum sampsonii.
Linlan TAO ; Shuangyu XU ; Zizhen ZHANG ; Yanan LI ; Jue YANG ; Wei GU ; Ping YI ; Xiaojiang HAO ; Chunmao YUAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(6):443-453
This study employed the α-glucosidase inhibitory activity model as an anti-diabetic assay and implemented a bioactivity-guided isolation strategy to identify novel natural compounds with potential therapeutic properties. Hypericum sampsoniiwas investigated, leading to the isolation of two highly modified seco-polycyclic polyprenylated acylphloroglucinols (PPAPs) (1 and 2), eight phenolic derivatives (3-10), and four terpene derivatives (11-14). The structures of compounds 1 and 2, featuring an unprecedented octahydro-2H-chromen-2-one ring system, were fully characterized using extensive spectroscopic data and quantum chemistry calculations. Six compounds (1, 5-7, 9, and 14) exhibited potential inhibitory effects against α-glucosidase, with IC50 values ranging from 0.050 ± 0.0016 to 366.70 ± 11.08 μg·mL-1. Notably, compound 5 (0.050 ± 0.0016 μg·mL-1) was identified as the most potential α-glucosidase inhibitor, with an inhibitory effect about 6900 times stronger than the positive control, acarbose (IC50 = 346.63 ± 15.65 μg·mL-1). A docking study was conducted to predict molecular interactions between two compounds (1 and 5) and α-glucosidase, and the hypothetical biosynthetic pathways of the two unprecedented seco-PPAPs were proposed.
Molecular Structure
;
Hypericum/chemistry*
;
alpha-Glucosidases
;
Magnetic Resonance Spectroscopy
;
Glycoside Hydrolase Inhibitors/pharmacology*
3.Ascyrones A-E, type B bicyclic ployprenylated acylphloroglucinol derivatives from Hypericum ascyron.
Xin DENG ; Jing XIA ; Meng-Yu QIAN ; Xiu-Rong WANG ; Bo HU ; Xue-Song LIU ; Lin WU
Chinese Journal of Natural Medicines (English Ed.) 2022;20(6):473-480
Five new polycyclic polyprenylated acylphloroglucinols (1-5), ascyrones A-E, and four known compounds (6-9) were isolated from the aerial parts of Hypericum ascyron. All of the isolates containing a bicyclo[3.3.1]nonane-2,4,9-trione core and a benzoyl group, belonged to type B bicyclic polyprenylated acylphloroglucinols (BPAPs). Their structures and absolute configurations were established based on spectroscopic analyses and calculated electronic circular dichroism (ECD) data. The anti-inflammatory, neuroprotective and cytotoxicity activities of compounds 1-4 and 6-9 were evaluated. Compound 6 exhibited obvious anti-inflammatory activity in lipopolysaccharide (LPS)-induced RAW264.7 cells. Compounds 1 and 9 exhibited slight cytotoxicity against Hep3B cells. Meanwhile, compound 1 showed mild neuroprotective activity against corticosterone (CORT)-induced PC12 cell damage at 10 μmol·L-1.
Animals
;
Anti-Inflammatory Agents/pharmacology*
;
Hypericum/chemistry*
;
Molecular Structure
;
PC12 Cells
;
Phloroglucinol/pharmacology*
;
Rats
4.A new xanthone from Hypericum lagarocladum.
Jing-Tong DENG ; Tong-Xi ZHOU ; Ying-Chun YANG ; Qing-di HAN ; Hai-Tao CHENG ; Qiang WANG ; Xin-Zhou YANG
China Journal of Chinese Materia Medica 2022;47(20):5544-5549
Repeated silica gel column chromatography, reversed-phase C_(18) column chromatography, Sephadex LH-20 column chromatography, high performance liquid chromatography and semi-preparative medium pressure liquid chromatography were performed to separate and purify the chemical constituents of Hypericum lagarocladum. Spectroscopic methods such as mass spectrometry(MS) and nuclear magnetic resonance(NMR) combined with physicochemical properties were adopted in identifying the structure of the isolated compounds. Ten compounds were isolated from the ethyl acetate fraction of H. lagarocladum and identified as lagarxanthone A(1), 1,7-dihydroxyxanthone(2), 3,4,5-trihydroxyxanthone(3), 2,7-dihydroxy-1-methoxyxanthone(4), 1,3-dihydroxy-7-methoxyxanthone(5), 1,5-dihydroxy-8-methoxyxanthone(6), 3,4-dihydroxy-2-methoxyxanthone(7), 3,4-dihydroxy-5-methoxyxanthone(8), 2,3-dimethoxyxanthone(9), and 2,3,4-trimethoxyxanthone(10). Among them, compound 1 was a new compound, and compounds 2-10 were isolated from this plant for the first time. These ten compounds were tested for glucose uptake in L6 cells, and the results showed that all the compounds had no significant effect on glucose uptake.
Hypericum/chemistry*
;
Xanthones
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
;
Glucose
5.Targeting the biological activity and biosynthesis of hyperforin: a mini-review.
Shuqin LIU ; Beilei YU ; Jungui DAI ; Ridao CHEN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(10):721-728
Hyperforin is a representative polycyclic polyprenylated acylphloroglucinols (PPAPs) that exerts a variety of pharmacological activities. The complete biosynthesis pathway of hyperforin has not been elucidated due to its complex structure and unclear genetic background of its source plants. This mini-review focuses on the bioactivity and biosynthesis of hyperforin. These analyses can provide useful insights into the biosynthesis investigations of hyperforin and other PPAPs with complex structures.
Phloroglucinol/chemistry*
;
Terpenes/chemistry*
;
Hypericum/chemistry*
;
Molecular Structure
6.Research progress of polycyclic polyprenylated acylphloroglucinols natural products.
Xue-Bing ZHAO ; Yi GUO ; Yan-Yan WANG ; Yong-Hui ZHANG
China Journal of Chinese Materia Medica 2021;46(12):3076-3086
Due to their fascinating chemical structures and extensive pharmacological activities, polycyclic polyprenylated acylphloroglucinols(PPAPs) have become one of the current research hotspots of natural products. In particular, some of the PPAPs not only have novel non-traditional skeleton types, but also contain more unknown possible activities, which are of great significance for the development of lead compounds. The structure, source, biosynthetic pathway and pharmacological activities of PPAPs with non-traditio-nal skeleton types isolated and identified in recent years are reviewed, in order to provide references for further research on such compounds.
Biological Products
;
Hypericum
;
Molecular Structure
;
Phloroglucinol
7.Chemical constituents from Hypericum curvisepalum.
Ming-Xia SUN ; Xue WANG ; Xiao-Xiu LI ; Teng-Fei JI ; Bo LIU
China Journal of Chinese Materia Medica 2021;46(15):3859-3864
This study explored the chemical constituents of the aerial part of Hypericum curvisepalum. Sixteen compounds were isolated from the 95% ethanol extract of H. curvisepalum with various chromatographic techniques, including a new prenylated phenyl polyketide, mysorenone D(1). Other compounds were mysorenone-A(2), mysorenone-C(3), mysorenone-B(4), peplidiforone A(5), 4-methoxy-3-(2-methylbut-3-en-2-yl)-6-phenyl-2H-pyran-2-one(6), hyperenone-A(7), 4-(3,3-dimethylallyl)oxy-6-phenyl-α-pyrone(8), peplidiforone B(9), elegaphenone(10), hypercohin A(11), hyperisampsin G(12), spathulenol(13), quercetin(14), β-sitosterol(15), and β-amyrin(16).
Benzophenones
;
Hypericum
;
Quercetin
8.Polycyclic polyprenylated acylphloroglucinols from Hypericum species and their biological activities.
Ping SONG ; Ji HAO ; Yan WANG ; Xin-Zhou YANG
China Journal of Chinese Materia Medica 2021;46(19):4881-4890
Hypericum species are distributed widely in China, especially in the southwest. This genus is rich in species types in China, including 55 species and 8 subspecies. The main chemical constituents of Hypericum species are flavonoids, xanthones and polycyclic polyprenylated acylphloroglucinols(PPAPs). PPAPs are characterized by polycyclic and branched-chain substitutions in their structures, which make their structure types diverse. Moreover, they have been found to have antitumor, antiviral, antibacterial, anti-inflammatory and other biological activities. This research classified and summarized 344 polycyclic polyprenylated acylphloroglucinols from Hypericum plants in order to provide a scientific basis for further development and utilization of PPAPs from the genus.
Flavonoids
;
Hypericum
;
Molecular Structure
;
Phloroglucinol/pharmacology*
;
Xanthones
9.Mechanism of Ficus hirta-Hypericum perforatum in treatment of microvascular angina based on network pharmacology and molecular docking.
Si-Jia LAI ; Da-Yang WANG ; Tian-Li LI ; Feng-Lan PU ; Xian WANG
China Journal of Chinese Materia Medica 2021;46(24):6474-6483
The active ingredients of Ficus hirta and Hypericum perforatum were collected from Traditional Chinese Medicine Database and Analysis Platform(TCMSP) and related papers. The potential targets of these two medicinal herbs were searched from HERB database, and those associated with microvascular angina were screened out from GeneCards, Online Mendelian Inheritance in Man(OMIM), Therapeutic Target Database(TTD), and HERB. Cytoscape was used to construct a protein-protein interaction(PPI) network of the common targets shared by the two herbs and microvascular angina based on the data of String platform. Metascape was employed to identify the involved biological processes and pathways enriched with the common targets. Cytoscape was used to draw the "active ingredient-target-pathway" network. AutoDock Vina was used to dock the core ingredients with the key targets. A total of 19 potential active ingredients and 71 potential targets were identified to be associated with microvascular angina. Bioinformatics analysis showed that phosphatidylinositol-3-kinase/protein kinase B(PI3 K-AKT), interleukin-17(IL17), hypoxia-inducible factor 1(HIF-1) and other signaling pathways were related to the treatment of microvascular angina by F. hirta and H. perforatum. Molecular docking results showed that β-sitosterol, luteolin and other ingredients had strong affinity with multiple targets including mitogen-associated protein kinase 1(MAPK1), epidermal growth factor receptor(EGFR) and so on. These findings indicated that F. hirta and H. perforatum may regulate PI3 K-AKT, IL17, HIF-1 and other signaling pathways by acting on multiple targets to alleviate oxidative stress, inhibit inflammatory response, regulate angiogenesis, and improve vascular endothelium and other functions. This study provides reference for in vitro and in vivo studies of the treatment of microvascular angina.
Drugs, Chinese Herbal/pharmacology*
;
Ficus
;
Humans
;
Hypericum
;
Medicine, Chinese Traditional
;
Microvascular Angina
;
Molecular Docking Simulation
;
Network Pharmacology
10.Hypericin, a Naphthodianthrone Derivative, Prevents Methylglyoxal-Induced Human Endothelial Cell Dysfunction.
Biomolecules & Therapeutics 2017;25(2):158-164
Methylglyoxal (MGO) is a highly reactive metabolite of glucose which is known to cause damage and induce apoptosis in endothelial cells. Endothelial cell damage is implicated in the progression of diabetes-associated complications and atherosclerosis. Hypericin, a naphthodianthrone isolated from Hypericum perforatum L. (St. John’s Wort), is a potent and selective inhibitor of protein kinase C and is reported to reduce neuropathic pain. In this work, we investigated the protective effect of hypericin on MGO-induced apoptosis in human umbilical vein endothelial cells (HUVECs). Hypericin showed significant anti-apoptotic activity in MGO-treated HUVECs. Pretreatment with hypericin significantly inhibited MGO-induced changes in cell morphology, cell death, and production of intracellular reactive oxygen species. Hypericin prevented MGO-induced apoptosis in HUVECs by increasing Bcl-2 expression and decreasing Bax expression. MGO was found to activate mitogen-activated protein kinases (MAPKs). Pretreatment with hypericin strongly inhibited the activation of MAPKs, including P38, JNK, and ERK1/2. Interestingly, hypericin also inhibited the formation of AGEs. These findings suggest that hypericin may be an effective regulator of MGO-induced apoptosis. In conclusion, hypericin downregulated the formation of AGEs and ameliorated MGO-induced dysfunction in human endothelial cells.
Apoptosis
;
Atherosclerosis
;
Cell Death
;
Endothelial Cells*
;
Glucose
;
Glycosylation End Products, Advanced
;
Human Umbilical Vein Endothelial Cells
;
Humans*
;
Hypericum
;
Mitogen-Activated Protein Kinases
;
Neuralgia
;
Protein Kinase C
;
Pyruvaldehyde
;
Reactive Oxygen Species

Result Analysis
Print
Save
E-mail