1.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
		                        		
		                        			
		                        			 Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents. 
		                        		
		                        		
		                        		
		                        	
2.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
		                        		
		                        			
		                        			 Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents. 
		                        		
		                        		
		                        		
		                        	
3.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
		                        		
		                        			
		                        			 Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents. 
		                        		
		                        		
		                        		
		                        	
4.Protecting our future: environmental hazards and children’s health in the face of environmental threats: a comprehensive overview
Jungha LEE ; Hyo-Bin KIM ; Hun-Jong JUNG ; Myunghee CHUNG ; So Eun PARK ; Kon-Hee LEE ; Won Seop KIM ; Jin-Hwa MOON ; Jung Won LEE ; Jae Won SHIM ; Sang Soo LEE ; Yunkoo KANG ; Young YOO ;
Clinical and Experimental Pediatrics 2024;67(11):589-598
		                        		
		                        			
		                        			 Children face the excitement of a changing world but also encounter environmental threats to their health that were neither known nor suspected several decades ago. Children are at particular risk of exposure to pollutants that are widely dispersed in the air, water, and food. Children and adolescents are exposed to chemical, physical, and biological risks at home, in school, and elsewhere. Actions are needed to reduce these risks for children exposed to a series of environmental hazards. Exposure to a number of persistent environmental pollutants including air pollutants, endocrine disruptors, noise, electromagnetic waves (EMWs), tobacco and other noxious substances, heavy metals, and microplastics, is linked to damage to the nervous and immune systems and affects reproductive function and development. Exposure to environmental hazards is responsible for several acute and chronic diseases that have replaced infectious diseases as the principal cause of illnesses and death during childhood. Children are disproportionately exposed to environmental toxicities. Children drink more water, eat more food, and breathe more frequently than adults. As a result, children have a substantially heavier exposure to toxins present in water, food, or air than adults. In addition, their hand-to-mouth behaviors and the fact that they live and play close to the ground make them more vulnerable than adults. Children undergo rapid growth and development processes that are easily disrupted. These systems are very delicate and cannot adequately repair thetional development in children’s environmental health was the Declaration of the Environment Leaders of the Eight on Children’s Environmental Health by the Group of Eight. In 2002, the World Health Organization launched an initiative to improve children’s environmental protection effort. Here, we review major environmental pollutants and related hazards among children and adolescents. 
		                        		
		                        		
		                        		
		                        	
5.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
		                        		
		                        			
		                        			 Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases. 
		                        		
		                        		
		                        		
		                        	
6.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
		                        		
		                        			
		                        			 Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases. 
		                        		
		                        		
		                        		
		                        	
7.Cohort profile: Multicenter Networks for Ideal Outcomes of Rare Pediatric Endocrine and Metabolic Diseases in Korea (OUTSPREAD study)
Yun Jeong LEE ; Chong Kun CHEON ; Junghwan SUH ; Jung-Eun MOON ; Moon Bae AHN ; Seong Hwan CHANG ; Jieun LEE ; Jin Ho CHOI ; Minsun KIM ; Han Hyuk LIM ; Jaehyun KIM ; Shin-Hye KIM ; Hae Sang LEE ; Yena LEE ; Eungu KANG ; Se Young KIM ; Yong Hee HONG ; Seung YANG ; Heon-Seok HAN ; Sochung CHUNG ; Won Kyoung CHO ; Eun Young KIM ; Jin Kyung KIM ; Kye Shik SHIM ; Eun-Gyong YOO ; Hae Soon KIM ; Aram YANG ; Sejin KIM ; Hyo-Kyoung NAM ; Sung Yoon CHO ; Young Ah LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(6):349-355
		                        		
		                        			
		                        			 Rare endocrine diseases are complex conditions that require lifelong specialized care due to their chronic nature and associated long-term complications. In Korea, a lack of nationwide data on clinical practice and outcomes has limited progress in patient care. Therefore, the Multicenter Networks for Ideal Outcomes of Pediatric Rare Endocrine and Metabolic Disease (OUTSPREAD) study was initiated. This study involves 30 centers across Korea. The study aims to improve the long-term prognosis of Korean patients with rare endocrine diseases by collecting comprehensive clinical data, biospecimens, and patient-reported outcomes to identify complications and unmet needs in patient care. Patients with childhood-onset pituitary, adrenal, or gonadal disorders, such as craniopharyngioma, congenital adrenal hyperplasia (CAH), and Turner syndrome were prioritized. The planned enrollment is 1,300 patients during the first study phase (2022–2024). Clinical, biochemical, and imaging data from diagnosis, treatment, and follow-up during 1980–2023 were retrospectively reviewed. For patients who agreed to participate in the prospective cohort, clinical data and biospecimens will be prospectively collected to discover ideal biomarkers that predict the effectiveness of disease control measures and prognosis. Patient-reported outcomes, including quality of life and depression scales, will be evaluated to assess psychosocial outcomes. Additionally, a substudy on CAH patients will develop a steroid hormone profiling method using liquid chromatography-tandem mass spectrometry to improve diagnosis and monitoring of treatment outcomes. This study will address unmet clinical needs by discovering ideal biomarkers, introducing evidence-based treatment guidelines, and ultimately improving long-term outcomes in the areas of rare endocrine and metabolic diseases. 
		                        		
		                        		
		                        		
		                        	
8.Head-to-head comparison between subcutaneous and sublingual immunotherapy in perennial allergic rhinitis: A systematic review and meta-analysis
Soo Jie CHUNG ; Jin-ah SIM ; Hyo-Bin KIM ; Do-Yang PARK ; Jeong-Hee CHOI
Allergy, Asthma & Respiratory Disease 2024;12(1):17-25
		                        		
		                        			 Purpose:
		                        			Few meta-analyses of head-to-head comparisons between subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT) for perennial allergic rhinitis (AR) have been performed so far. This study aimed to compare the efficacy, safety, and adherence of SCIT and SLIT in patients with house dust mite (HDM)-sensitized AR through a meta-analysis of head-to-head comparative studies. 
		                        		
		                        			Methods:
		                        			A meta-analysis based on direct comparisons of SCIT and SLIT in HDM-sensitized AR was performed, using randomized controlled trials (RCTs) and nonrandomized studies (NRSs), on efficacy, safety, and adherence, which had been published until April 30, 2021. Treatment efficacy was calculated as the standardized mean difference in symptoms and medication scores after treatment between SCIT and SLIT. Safety and adherence to treatment were compared with the relative risk (RR) of SCIT and SLIT. 
		                        		
		                        			Results:
		                        			Six RCTs and 3 NRS scores were analyzed. No statistically significant difference was noticed in improvement in symptoms and medication scores between SCIT and SLIT groups. Systemic adverse events occurred more frequently in SCIT than in SLIT in both RCT (RR, 3.97; 95% confidence interval [CI], 0.50–31.57) and NRS (RR, 5.48; 95% CI, 1.94–15.50). SCIT showed significantly higher adherence than did SLIT (RR, 1.16; 95% CI, 0.92–1.47). 
		                        		
		                        			Conclusion
		                        			No significant difference in efficacy was noticed between the 2 modalities for HDM-sensitized AR. However, SLIT had significantly lower number of systemic adverse reactions, and SCIT had more preferable adherence. 
		                        		
		                        		
		                        		
		                        	
9.Practice guidelines for managing extrahepatic biliary tract cancers
Hyung Sun KIM ; Mee Joo KANG ; Jingu KANG ; Kyubo KIM ; Bohyun KIM ; Seong-Hun KIM ; Soo Jin KIM ; Yong-Il KIM ; Joo Young KIM ; Jin Sil KIM ; Haeryoung KIM ; Hyo Jung KIM ; Ji Hae NAHM ; Won Suk PARK ; Eunkyu PARK ; Joo Kyung PARK ; Jin Myung PARK ; Byeong Jun SONG ; Yong Chan SHIN ; Keun Soo AHN ; Sang Myung WOO ; Jeong Il YU ; Changhoon YOO ; Kyoungbun LEE ; Dong Ho LEE ; Myung Ah LEE ; Seung Eun LEE ; Ik Jae LEE ; Huisong LEE ; Jung Ho IM ; Kee-Taek JANG ; Hye Young JANG ; Sun-Young JUN ; Hong Jae CHON ; Min Kyu JUNG ; Yong Eun CHUNG ; Jae Uk CHONG ; Eunae CHO ; Eui Kyu CHIE ; Sae Byeol CHOI ; Seo-Yeon CHOI ; Seong Ji CHOI ; Joon Young CHOI ; Hye-Jeong CHOI ; Seung-Mo HONG ; Ji Hyung HONG ; Tae Ho HONG ; Shin Hye HWANG ; In Gyu HWANG ; Joon Seong PARK
Annals of Hepato-Biliary-Pancreatic Surgery 2024;28(2):161-202
		                        		
		                        			 Background:
		                        			s/Aims: Reported incidence of extrahepatic bile duct cancer is higher in Asians than in Western populations. Korea, in particular, is one of the countries with the highest incidence rates of extrahepatic bile duct cancer in the world. Although research and innovative therapeutic modalities for extrahepatic bile duct cancer are emerging, clinical guidelines are currently unavailable in Korea. The Korean Society of Hepato-Biliary-Pancreatic Surgery in collaboration with related societies (Korean Pancreatic and Biliary Surgery Society, Korean Society of Abdominal Radiology, Korean Society of Medical Oncology, Korean Society of Radiation Oncology, Korean Society of Pathologists, and Korean Society of Nuclear Medicine) decided to establish clinical guideline for extrahepatic bile duct cancer in June 2021. 
		                        		
		                        			Methods:
		                        			Contents of the guidelines were developed through subgroup meetings for each key question and a preliminary draft was finalized through a Clinical Guidelines Committee workshop. 
		                        		
		                        			Results:
		                        			In November 2021, the finalized draft was presented for public scrutiny during a formal hearing. 
		                        		
		                        			Conclusions
		                        			The extrahepatic guideline committee believed that this guideline could be helpful in the treatment of patients. 
		                        		
		                        		
		                        		
		                        	
10.Long-term efficacy of a triptorelin 3-month depot in girls with central precocious puberty
Kyu Hyun PARK ; Si-Hwa GWAG ; Yu Jin KIM ; Lindsey Yoojin CHUNG ; Eungu KANG ; Hyo-Kyoung NAM ; Young-Jun RHIE ; Kee-Hyoung LEE
Annals of Pediatric Endocrinology & Metabolism 2024;29(3):161-166
		                        		
		                        			 Purpose:
		                        			Three-month gonadotropin-releasing hormone agonists (GnRHas) are expected to achieve better compliance in patients with central precocious puberty (CPP) compared to the monthly formulation. However, 1-month depot remains the dominant choice for conventional treatment worldwide. Our study aimed to investigate the long-term efficacy of a 3-month GnRHa for CPP treatment. 
		                        		
		                        			Methods:
		                        			In this retrospective study, 69 Korean girls with CPP were prescribed either triptorelin pamoate (TP) 3-month depot (n=29) or triptorelin acetate (TA) 1-month depot (n=40) and were followed for 1 year after the end of treatment. Auxological, radiological, and biochemical data were collected every 6 months. 
		                        		
		                        			Results:
		                        			Baseline characteristics were similar between the 2 groups. In the TP 3-month depot group, 27 of 29 patients (93.1%) exhibited suppressed luteinizing hormone level (below 2.5 IU/L) after 6 months of treatment, and this suppression level was reserved until the final injection. The degree of bone age advancement in the TP 3-month depot group decreased from 1.8±0.4 years at the start of treatment to 0.6±0.5 years at 1-year posttreatment. The gain in predicted adult height (PAH) 1 year after the end of treatment was similar between the TP 3-month and TA 1-month depot groups (5.2±3.1 and 5.3±2.4 cm, respectively; p=0.875). 
		                        		
		                        			Conclusion
		                        			A 3-month depot of triptorelin effectively inhibited gonadal and sex hormones, suppressed bone maturation, and increased PAH. For patient convenience, we suggest a 3-month GnRHa regimen as a promising CPP treatment option. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail