1.Importation and Transmission of SARS-CoV-2 B.1.1.529 (Omicron) Variant of Concern in Korea, November 2021
Ji Joo LEE ; Young June CHOE ; Hyeongseop JEONG ; Moonsu KIM ; Seonggon KIM ; Hanna YOO ; Kunhee PARK ; Chanhee KIM ; Sojin CHOI ; JiWoo SIM ; Yoojin PARK ; In Sil HUH ; Gasil HONG ; Mi Young KIM ; Jin Su SONG ; Jihee LEE ; Eun-Jin KIM ; Jee Eun RHEE ; Il-Hwan KIM ; Jin GWACK ; Jungyeon KIM ; Jin-Hwan JEON ; Wook-Gyo LEE ; Suyeon JEONG ; Jusim KIM ; Byungsik BAE ; Ja Eun KIM ; Hyeonsoo KIM ; Hye Young LEE ; Sang-Eun LEE ; Jong Mu KIM ; Hanul PARK ; Mi YU ; Jihyun CHOI ; Jia KIM ; Hyeryeon LEE ; Eun-Jung JANG ; Dosang LIM ; Sangwon LEE ; Young-Joon PARK
Journal of Korean Medical Science 2021;36(50):e346-
In November 2021, 14 international travel-related severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant of concern (VOC) patients were detected in South Korea. Epidemiologic investigation revealed community transmission of the omicron VOC. A total of 80 SARS-CoV-2 omicron VOC-positive patients were identified until December 10, 2021 and 66 of them reported no relation to the international travel.There may be more transmissions with this VOC in Korea than reported.
2.Generation of Multilayered 3D Structures of HepG2 Cells Using a Bio-printing Technique.
Hyeryeon JEON ; Kyojin KANG ; Su A PARK ; Wan Doo KIM ; Seung Sam PAIK ; Sang Hun LEE ; Jaemin JEONG ; Dongho CHOI
Gut and Liver 2017;11(1):121-128
BACKGROUND/AIMS: Chronic liver disease is a major widespread cause of death, and whole liver transplantation is the only definitive treatment for patients with end-stage liver diseases. However, many problems, including donor shortage, surgical complications and cost, hinder their usage. Recently, tissue-engineering technology provided a potential breakthrough for solving these problems. Three-dimensional (3D) printing technology has been used to mimic tissues and organs suitable for transplantation, but applications for the liver have been rare. METHODS: A 3D bioprinting system was used to construct 3D printed hepatic structures using alginate. HepG2 cells were cultured on these 3D structures for 3 weeks and examined by fluorescence microscopy, histology and immunohistochemistry. The expression of liver-specific markers was quantified on days 1, 7, 14, and 21. RESULTS: The cells grew well on the alginate scaffold, and liver-specific gene expression increased. The cells grew more extensively in 3D culture than two-dimensional culture and exhibited better structural aspects of the liver, indicating that the 3D bioprinting method recapitulates the liver architecture. CONCLUSIONS: The 3D bioprinting of hepatic structures appears feasible. This technology may become a major tool and provide a bridge between basic science and the clinical challenges for regenerative medicine of the liver.
Bioprinting
;
Cause of Death
;
Gene Expression
;
Hep G2 Cells*
;
Humans
;
Immunohistochemistry
;
Liver
;
Liver Diseases
;
Liver Transplantation
;
Methods
;
Microscopy, Fluorescence
;
Printing, Three-Dimensional
;
Regenerative Medicine
;
Tissue Donors

Result Analysis
Print
Save
E-mail