1.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
2.Low-Dose Perifosine, a Phase II Phospholipid Akt Inhibitor, Selectively Sensitizes Drug-Resistant ABCB1-Overexpressing Cancer Cells
Jae Hyeon PARK ; Haeun LEE ; Tian ZHENG ; Joo Kyung SHIN ; Sungpil YOON ; Hyung Sik KIM
Biomolecules & Therapeutics 2025;33(1):170-181
We identified drugs or mechanisms targeting ABCB1 (or P-glycoprotein; P-gp)-overexpressing drug-resistant cancer populations, given that these cells play a key role in tumor recurrence. Specifically, we searched for Akt inhibitors that could increase cytotoxicity in P-gp-overexpressing drug-resistant cancer cells. We performed cytotoxicity assays using five cell lines: 1. MCF-7/ADR, 2. KBV20C cancer cells (P-gp overexpression, vincristine [VIC] resistance, and GSK690693-resistance), 3. MCF-7, 4. normal HaCaT cells (non-P-gp-overexpressing, VIC-sensitive, and GSK690693-sensitive), and 5. MDA-MB-231 cancer cells (non-Pgp overexpression, relatively VIC-resistance, and GSK690693-sensitive). Herein, we found that low-dose perifosine markedly and selectively sensitizes both MCF-7/ADR and KBV20C drug-resistant cancer cells exhibiting P-gp overexpression. Compared with other Akt inhibitors (AZD5363, BKM120, and GSK690693), low-dose perifosine specifically sensitized P-gp-overexpressing resistant MCF-7/ADR cancer cells. Conversely, Akt inhibitors (other than perifosine) could enhance sensitization effects in drugsensitive MCF-7 and HaCaT cells. Considering that perifosine has both an alkyl-phospholipid structure and is an allosteric inhibitor for membrane-localizing Akt-targeting, we examined structurally and functionally similar Akt inhibitors (miltefosine and MK-2206).However, we found that these inhibitors were non-specific, suggesting that the specificity of perifosine in P-gp-overexpressing resistant cancer cells is unrelated to phospholipid localizing membranes or allosteric inhibition. Furthermore, we examined the molecular mechanism of low-dose perifosine in drug-resistant MCF-7/ADR cancer cells. MCF-7/ADR cells exhibited increased apoptosis via G2 arrest and autophagy induction. However, no increase in P-gp-inhibitory activity was observed in drug-resistant MCF-7/ADR cancer cells. Single low-dose perifosine treatment exerted a sensitization effect similar to co-treatment with VIC in P-gp-overexpressing drug-resistant MCF-7/ADR cancer cells, suggesting that single treatment with low-dose perifosine is a more powerful tool against P-gp-overexpressing drug-resistant cancer cells. These findings could contribute to its clinical use as a first-line treatment, explicitly targeting P-gp-overexpressing resistant cancer populations in heterogeneous tumor populations.Therefore, perifosine may be valuable in delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant cancer cells.
3.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
4.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
5.Effect of Wearing Phospholipid-releasing Contact Lenses on Dry Eyes in Rabbits
Hyeon Jung KIM ; Sehie PARK ; Yun Kyoung RYU ; Jin Sun HWANG ; Sun Hee OH ; Jae Hwi LEE ; Gui Bae KIM ; Young Joo SHIN
Journal of the Korean Ophthalmological Society 2025;66(4):181-190
Purpose:
To investigate whether a new phospholipid-releasing soft contact lens can improve symptoms of dry eyes.
Methods:
The study used 2.5-3.0 kg New Zealand rabbits including both normal non-dry eye rabbits and dry eye rabbits, the latter having undergone electrocauterization of the meibomian glands to block the gland orifices. Each rabbit wore a control contact lens on one eye and a phospholipid-releasing contact lens on the other eye daily. Phospholipid-releasing and control contact lenses were provided by NEOVISION Co., Ltd. The parameters assessed included tear film break-up time, tear osmolarity, ocular surface staining, and central corneal thickness. After the experiment, the rabbits were euthanized and their conjunctival tissue was stained with Periodic Acid Schiff (PAS) to observe conjunctival goblet cells.
Results:
In both dry eye and normal non-dry eye rabbits, tear film break-up time was longer and tear osmolarity was lower when using the phospholipid-releasing contact lens compared to the control contact lens. The ocular surface remained unstained in normal non-dry eye rabbits while staining was observed in dry eye rabbits. There was no significant difference in central corneal thickness between the control and phospholipid-releasing contact lenses in either group. PAS staining showed no difference in conjunctival goblet cell density between the two lens types in normal non-dry eye rabbits. However, in dry eye rabbits, the conjunctival goblet cell density tended to be slightly higher with the phospholipid-releasing contact lens compared to the control lens.
Conclusions
Phospholipid-releasing contact lenses may help reduce dry eye symptoms and minimize contact lens-related complications by stabilizing the tear film and lowering tear osmolarity.
6.Low-Dose Perifosine, a Phase II Phospholipid Akt Inhibitor, Selectively Sensitizes Drug-Resistant ABCB1-Overexpressing Cancer Cells
Jae Hyeon PARK ; Haeun LEE ; Tian ZHENG ; Joo Kyung SHIN ; Sungpil YOON ; Hyung Sik KIM
Biomolecules & Therapeutics 2025;33(1):170-181
We identified drugs or mechanisms targeting ABCB1 (or P-glycoprotein; P-gp)-overexpressing drug-resistant cancer populations, given that these cells play a key role in tumor recurrence. Specifically, we searched for Akt inhibitors that could increase cytotoxicity in P-gp-overexpressing drug-resistant cancer cells. We performed cytotoxicity assays using five cell lines: 1. MCF-7/ADR, 2. KBV20C cancer cells (P-gp overexpression, vincristine [VIC] resistance, and GSK690693-resistance), 3. MCF-7, 4. normal HaCaT cells (non-P-gp-overexpressing, VIC-sensitive, and GSK690693-sensitive), and 5. MDA-MB-231 cancer cells (non-Pgp overexpression, relatively VIC-resistance, and GSK690693-sensitive). Herein, we found that low-dose perifosine markedly and selectively sensitizes both MCF-7/ADR and KBV20C drug-resistant cancer cells exhibiting P-gp overexpression. Compared with other Akt inhibitors (AZD5363, BKM120, and GSK690693), low-dose perifosine specifically sensitized P-gp-overexpressing resistant MCF-7/ADR cancer cells. Conversely, Akt inhibitors (other than perifosine) could enhance sensitization effects in drugsensitive MCF-7 and HaCaT cells. Considering that perifosine has both an alkyl-phospholipid structure and is an allosteric inhibitor for membrane-localizing Akt-targeting, we examined structurally and functionally similar Akt inhibitors (miltefosine and MK-2206).However, we found that these inhibitors were non-specific, suggesting that the specificity of perifosine in P-gp-overexpressing resistant cancer cells is unrelated to phospholipid localizing membranes or allosteric inhibition. Furthermore, we examined the molecular mechanism of low-dose perifosine in drug-resistant MCF-7/ADR cancer cells. MCF-7/ADR cells exhibited increased apoptosis via G2 arrest and autophagy induction. However, no increase in P-gp-inhibitory activity was observed in drug-resistant MCF-7/ADR cancer cells. Single low-dose perifosine treatment exerted a sensitization effect similar to co-treatment with VIC in P-gp-overexpressing drug-resistant MCF-7/ADR cancer cells, suggesting that single treatment with low-dose perifosine is a more powerful tool against P-gp-overexpressing drug-resistant cancer cells. These findings could contribute to its clinical use as a first-line treatment, explicitly targeting P-gp-overexpressing resistant cancer populations in heterogeneous tumor populations.Therefore, perifosine may be valuable in delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant cancer cells.
7.Effect of Wearing Phospholipid-releasing Contact Lenses on Dry Eyes in Rabbits
Hyeon Jung KIM ; Sehie PARK ; Yun Kyoung RYU ; Jin Sun HWANG ; Sun Hee OH ; Jae Hwi LEE ; Gui Bae KIM ; Young Joo SHIN
Journal of the Korean Ophthalmological Society 2025;66(4):181-190
Purpose:
To investigate whether a new phospholipid-releasing soft contact lens can improve symptoms of dry eyes.
Methods:
The study used 2.5-3.0 kg New Zealand rabbits including both normal non-dry eye rabbits and dry eye rabbits, the latter having undergone electrocauterization of the meibomian glands to block the gland orifices. Each rabbit wore a control contact lens on one eye and a phospholipid-releasing contact lens on the other eye daily. Phospholipid-releasing and control contact lenses were provided by NEOVISION Co., Ltd. The parameters assessed included tear film break-up time, tear osmolarity, ocular surface staining, and central corneal thickness. After the experiment, the rabbits were euthanized and their conjunctival tissue was stained with Periodic Acid Schiff (PAS) to observe conjunctival goblet cells.
Results:
In both dry eye and normal non-dry eye rabbits, tear film break-up time was longer and tear osmolarity was lower when using the phospholipid-releasing contact lens compared to the control contact lens. The ocular surface remained unstained in normal non-dry eye rabbits while staining was observed in dry eye rabbits. There was no significant difference in central corneal thickness between the control and phospholipid-releasing contact lenses in either group. PAS staining showed no difference in conjunctival goblet cell density between the two lens types in normal non-dry eye rabbits. However, in dry eye rabbits, the conjunctival goblet cell density tended to be slightly higher with the phospholipid-releasing contact lens compared to the control lens.
Conclusions
Phospholipid-releasing contact lenses may help reduce dry eye symptoms and minimize contact lens-related complications by stabilizing the tear film and lowering tear osmolarity.
8.Regenerative Capacity of Alveolar Type 2 Cells Is Proportionally Reduced Following Disease Progression in Idiopathic Pulmonary Fibrosis-Derived Organoid Cultures
Hyeon Kyu CHOI ; Gaeul BANG ; Ju Hye SHIN ; Mi Hwa SHIN ; Ala WOO ; Song Yee KIM ; Sang Hoon LEE ; Eun Young KIM ; Hyo Sup SHIM ; Young Joo SUH ; Ha Eun KIM ; Jin Gu LEE ; Jinwook CHOI ; Ju Hyeon LEE ; Chul Hoon KIM ; Moo Suk PARK
Tuberculosis and Respiratory Diseases 2025;88(1):130-137
Background:
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that culminates in respiratory failure and death due to irreversible scarring of the distal lung. While initially considered a chronic inflammatory disorder, the aberrant function of the alveolar epithelium is now acknowledged as playing a central role in the pathophysiology of IPF. This study aimed to investigate the regenerative capacity of alveolar type 2 (AT2) cells using IPF-derived alveolar organoids and to examine the effects of disease progression on this capacity.
Methods:
Lung tissues from three pneumothorax patients and six IPF patients (early and advanced stages) were obtained through video-assisted thoracoscopic surgery and lung transplantation. HTII-280+ cells were isolated from CD31-CD45-epithelial cell adhesion molecule (EpCAM)+ cells in the distal lungs of IPF and pneumothorax patients using fluorescence-activated cell sorting (FACS) and resuspended in 48-well plates to establish IPF-derived alveolar organoids. Immunostaining was used to verify the presence of AT2 cells.
Results:
FACS sorting yielded approximately 1% of AT2 cells in early IPF tissue, and the number decreased as the disease progressed, in contrast to 2.7% in pneumothorax. Additionally, the cultured organoids in the IPF groups were smaller and less numerous compared to those from pneumothorax patients. The colony forming efficiency decreased as the disease advanced. Immunostaining results showed that the IPF organoids expressed less surfactant protein C (SFTPC) compared to the pneumothorax group and contained keratin 5+ (KRT5+) cells.
Conclusion
This study confirmed that the regenerative capacity of AT2 cells in IPF decreases as the disease progresses, with IPF-derived AT2 cells inherently exhibiting functional abnormalities and altered differentiation plasticity.
9.Low-Dose Perifosine, a Phase II Phospholipid Akt Inhibitor, Selectively Sensitizes Drug-Resistant ABCB1-Overexpressing Cancer Cells
Jae Hyeon PARK ; Haeun LEE ; Tian ZHENG ; Joo Kyung SHIN ; Sungpil YOON ; Hyung Sik KIM
Biomolecules & Therapeutics 2025;33(1):170-181
We identified drugs or mechanisms targeting ABCB1 (or P-glycoprotein; P-gp)-overexpressing drug-resistant cancer populations, given that these cells play a key role in tumor recurrence. Specifically, we searched for Akt inhibitors that could increase cytotoxicity in P-gp-overexpressing drug-resistant cancer cells. We performed cytotoxicity assays using five cell lines: 1. MCF-7/ADR, 2. KBV20C cancer cells (P-gp overexpression, vincristine [VIC] resistance, and GSK690693-resistance), 3. MCF-7, 4. normal HaCaT cells (non-P-gp-overexpressing, VIC-sensitive, and GSK690693-sensitive), and 5. MDA-MB-231 cancer cells (non-Pgp overexpression, relatively VIC-resistance, and GSK690693-sensitive). Herein, we found that low-dose perifosine markedly and selectively sensitizes both MCF-7/ADR and KBV20C drug-resistant cancer cells exhibiting P-gp overexpression. Compared with other Akt inhibitors (AZD5363, BKM120, and GSK690693), low-dose perifosine specifically sensitized P-gp-overexpressing resistant MCF-7/ADR cancer cells. Conversely, Akt inhibitors (other than perifosine) could enhance sensitization effects in drugsensitive MCF-7 and HaCaT cells. Considering that perifosine has both an alkyl-phospholipid structure and is an allosteric inhibitor for membrane-localizing Akt-targeting, we examined structurally and functionally similar Akt inhibitors (miltefosine and MK-2206).However, we found that these inhibitors were non-specific, suggesting that the specificity of perifosine in P-gp-overexpressing resistant cancer cells is unrelated to phospholipid localizing membranes or allosteric inhibition. Furthermore, we examined the molecular mechanism of low-dose perifosine in drug-resistant MCF-7/ADR cancer cells. MCF-7/ADR cells exhibited increased apoptosis via G2 arrest and autophagy induction. However, no increase in P-gp-inhibitory activity was observed in drug-resistant MCF-7/ADR cancer cells. Single low-dose perifosine treatment exerted a sensitization effect similar to co-treatment with VIC in P-gp-overexpressing drug-resistant MCF-7/ADR cancer cells, suggesting that single treatment with low-dose perifosine is a more powerful tool against P-gp-overexpressing drug-resistant cancer cells. These findings could contribute to its clinical use as a first-line treatment, explicitly targeting P-gp-overexpressing resistant cancer populations in heterogeneous tumor populations.Therefore, perifosine may be valuable in delaying or reducing cancer recurrence by targeting P-gp-overexpressing drug-resistant cancer cells.
10.Effect of Wearing Phospholipid-releasing Contact Lenses on Dry Eyes in Rabbits
Hyeon Jung KIM ; Sehie PARK ; Yun Kyoung RYU ; Jin Sun HWANG ; Sun Hee OH ; Jae Hwi LEE ; Gui Bae KIM ; Young Joo SHIN
Journal of the Korean Ophthalmological Society 2025;66(4):181-190
Purpose:
To investigate whether a new phospholipid-releasing soft contact lens can improve symptoms of dry eyes.
Methods:
The study used 2.5-3.0 kg New Zealand rabbits including both normal non-dry eye rabbits and dry eye rabbits, the latter having undergone electrocauterization of the meibomian glands to block the gland orifices. Each rabbit wore a control contact lens on one eye and a phospholipid-releasing contact lens on the other eye daily. Phospholipid-releasing and control contact lenses were provided by NEOVISION Co., Ltd. The parameters assessed included tear film break-up time, tear osmolarity, ocular surface staining, and central corneal thickness. After the experiment, the rabbits were euthanized and their conjunctival tissue was stained with Periodic Acid Schiff (PAS) to observe conjunctival goblet cells.
Results:
In both dry eye and normal non-dry eye rabbits, tear film break-up time was longer and tear osmolarity was lower when using the phospholipid-releasing contact lens compared to the control contact lens. The ocular surface remained unstained in normal non-dry eye rabbits while staining was observed in dry eye rabbits. There was no significant difference in central corneal thickness between the control and phospholipid-releasing contact lenses in either group. PAS staining showed no difference in conjunctival goblet cell density between the two lens types in normal non-dry eye rabbits. However, in dry eye rabbits, the conjunctival goblet cell density tended to be slightly higher with the phospholipid-releasing contact lens compared to the control lens.
Conclusions
Phospholipid-releasing contact lenses may help reduce dry eye symptoms and minimize contact lens-related complications by stabilizing the tear film and lowering tear osmolarity.

Result Analysis
Print
Save
E-mail