1.Sphingomonas Paucimobilis-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism
Eun-Hwa LEE ; Hyejin KWON ; So-Young PARK ; Jin-Young PARK ; Jin-Hwan HONG ; Jae-Won PAENG ; Yoon-Keun KIM ; Pyung-Lim HAN
Experimental Neurobiology 2025;34(1):20-33
Recent studies have shown an increased abundance of Sphingomonas paucimobilis, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that S. paucimobilis is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of S. paucimobilis-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that Spa-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by SpaEV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, Spa-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of Spa-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that Spa-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.
2.Sphingomonas Paucimobilis-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism
Eun-Hwa LEE ; Hyejin KWON ; So-Young PARK ; Jin-Young PARK ; Jin-Hwan HONG ; Jae-Won PAENG ; Yoon-Keun KIM ; Pyung-Lim HAN
Experimental Neurobiology 2025;34(1):20-33
Recent studies have shown an increased abundance of Sphingomonas paucimobilis, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that S. paucimobilis is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of S. paucimobilis-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that Spa-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by SpaEV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, Spa-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of Spa-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that Spa-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.
3.Sphingomonas Paucimobilis-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism
Eun-Hwa LEE ; Hyejin KWON ; So-Young PARK ; Jin-Young PARK ; Jin-Hwan HONG ; Jae-Won PAENG ; Yoon-Keun KIM ; Pyung-Lim HAN
Experimental Neurobiology 2025;34(1):20-33
Recent studies have shown an increased abundance of Sphingomonas paucimobilis, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that S. paucimobilis is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of S. paucimobilis-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that Spa-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by SpaEV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, Spa-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of Spa-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that Spa-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.
4.Sphingomonas Paucimobilis-derived Extracellular Vesicles Reverse Aβ-induced Dysregulation of Neurotrophic Factors, Mitochondrial Function, and Inflammatory Factors through MeCP2-mediated Mechanism
Eun-Hwa LEE ; Hyejin KWON ; So-Young PARK ; Jin-Young PARK ; Jin-Hwan HONG ; Jae-Won PAENG ; Yoon-Keun KIM ; Pyung-Lim HAN
Experimental Neurobiology 2025;34(1):20-33
Recent studies have shown an increased abundance of Sphingomonas paucimobilis, an aerobic, Gram-negative bacterium with a distinctive cell envelope rich in glycosphingolipids, within the gut microbiome of individuals with Alzheimer Disease (AD). However, the fact that S. paucimobilis is a well-known pathogen associated with nosocomial infections presents a significant challenge in investigating whether its presence in the gut microbiome is detrimental or beneficial, particularly in the context of AD. This study examines the impact of S. paucimobilis-derived extracellular vesicles (Spa-EV) on Aβ-induced pathology in cellular and animal models of AD. Microarray analysis reveals that Spa-EV treatment modulates Aβ42-induced alterations in gene expression in both HT22 neuronal cells and BV2 microglia cells. Among the genes significantly affected by SpaEV, notable examples include Bdnf, Nt3/4, and Trkb, which are key players of neurotrophic signaling; Pgc1α, an upstream regulator of mitochondrial biogenesis; Mecp2 and Sirt1, epigenetic factors that regulate numerous gene expressions; and Il1β, Tnfα, and Nfκb-p65, which are associated with neuroinflammation. Remarkably, Spa-EV effectively reverses Aβ42-induced alteration in the expression of these genes through the upregulation of Mecp2. Furthermore, administration of Spa-EV in Tg-APP/PS1 mice restores the reduced expression of neurotrophic factors, Pgc1α, MeCP2, and Sirt1, while suppressing the increased expression of proinflammatory genes in the brain. Our results indicate that Spa-EV has the potential to reverse Aβ-induced dysregulation of gene expression in neuronal and microglial cells. These alterations encompass those essential for neurotrophic signaling and neuronal plasticity, mitochondrial function, and the regulation of inflammatory processes.
9.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
10.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.

Result Analysis
Print
Save
E-mail