1.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
2.Clinicopathological Correlations of Neurodegenerative Diseases in the National Brain Biobank of Korea
Young Hee JUNG ; Jun Pyo KIM ; Hee Jin KIM ; Hyemin JANG ; Hyun Jeong HAN ; Young Ho KOH ; Duk L. NA ; Yeon-Lim SUH ; Gi Yeong HUH ; Jae-Kyung WON ; Seong-Ik KIM ; Ji-Young CHOI ; Sang Won SEO ; Sung-Hye PARK ; Eun-Joo KIM
Journal of Clinical Neurology 2025;21(3):190-200
Background:
and Purpose The National Brain Biobank of Korea (NBBK) is a brain bank consortium supported by the Korea Disease Control and Prevention Agency and the Korea National Institute of Health, and was launched in 2015 to support research into neurodegenerative disease dementia (NDD). This study aimed to introduce the NBBK and describes clinicopathological correlations based on analyses of data collected from the NBBK.
Methods:
Four hospital-based brain banks have been established in South Korea: Samsung Medical Center Brain Bank (SMCBB), Seoul National University Hospital Brain Bank (SNUHBB), Pusan National University Hospital Brain Bank (PNUHBB), and Myongji Hospital Brain Bank (MJHBB). Clinical and pathological data were collected from these brain banks using standardized protocols. The prevalence rates of clinical and pathological diagnoses were analyzed in order to characterize the clinicopathological correlations.
Results:
Between August 2016 and December 2023, 185 brain specimens were collected and pathologically evaluated (SNUHBB: 117; PNUHBB: 27; SMCBB: 34; MJHBB: 7). The age at consent was 70.8±12.6 years, and the age at autopsy was 71.7±12.4 years. The four-most-common clinical diagnoses were Alzheimer’s disease (AD) dementia (20.0%), idiopathic Parkinson’s disease (15.1%), unspecified dementia (11.9%), and cognitively unimpaired (CU) (11.4%).Most cases of unspecified dementia had a pathological diagnosis of central nervous system (CNS) vasculopathy (31.8%) or AD (31.8%). Remarkably, only 14.2% of CU cases had normal pathological findings. The three-most-common pathological diagnoses were AD (26.5%), CNS vasculopathy (14.1%), and Lewy body disease (13.5%).
Conclusions
These clinical and neuropathological findings provide a deeper understanding of the mechanisms underlying NDD in South Korea.
3.Palliative Care and Hospice for Heart Failure Patients: Position Statement From the Korean Society of Heart Failure
Seung-Mok LEE ; Hae-Young LEE ; Shin Hye YOO ; Hyun-Jai CHO ; Jong-Chan YOUN ; Seong-Mi PARK ; Jin-Ok JEONG ; Min-Seok KIM ; Chi Young SHIM ; Jin Joo PARK ; Kye Hun KIM ; Eung Ju KIM ; Jeong Hoon YANG ; Jae Yeong CHO ; Sang-Ho JO ; Kyung-Kuk HWANG ; Ju-Hee LEE ; In-Cheol KIM ; Gi Beom KIM ; Jung Hyun CHOI ; Sung-Hee SHIN ; Wook-Jin CHUNG ; Seok-Min KANG ; Myeong Chan CHO ; Dae-Gyun PARK ; Byung-Su YOO
International Journal of Heart Failure 2025;7(1):32-46
Heart failure (HF) is a major cause of mortality and morbidity in South Korea, imposing substantial physical, emotional, and financial burdens on patients and society. Despite the high burden of symptom and complex care needs of HF patients, palliative care and hospice services remain underutilized in South Korea due to cultural, institutional, and knowledge-related barriers. This position statement from the Korean Society of Heart Failure emphasizes the need for integrating palliative and hospice care into HF management to improve quality of life and support holistic care for patients and their families. By clarifying the role of palliative care in HF and proposing practical referral criteria, this position statement aims to bridge the gap between HF and palliative care services in South Korea, ultimately improving patient-centered outcomes and aligning treatment with the goals and values of HF patients.
4.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
5.Clinicopathological Correlations of Neurodegenerative Diseases in the National Brain Biobank of Korea
Young Hee JUNG ; Jun Pyo KIM ; Hee Jin KIM ; Hyemin JANG ; Hyun Jeong HAN ; Young Ho KOH ; Duk L. NA ; Yeon-Lim SUH ; Gi Yeong HUH ; Jae-Kyung WON ; Seong-Ik KIM ; Ji-Young CHOI ; Sang Won SEO ; Sung-Hye PARK ; Eun-Joo KIM
Journal of Clinical Neurology 2025;21(3):190-200
Background:
and Purpose The National Brain Biobank of Korea (NBBK) is a brain bank consortium supported by the Korea Disease Control and Prevention Agency and the Korea National Institute of Health, and was launched in 2015 to support research into neurodegenerative disease dementia (NDD). This study aimed to introduce the NBBK and describes clinicopathological correlations based on analyses of data collected from the NBBK.
Methods:
Four hospital-based brain banks have been established in South Korea: Samsung Medical Center Brain Bank (SMCBB), Seoul National University Hospital Brain Bank (SNUHBB), Pusan National University Hospital Brain Bank (PNUHBB), and Myongji Hospital Brain Bank (MJHBB). Clinical and pathological data were collected from these brain banks using standardized protocols. The prevalence rates of clinical and pathological diagnoses were analyzed in order to characterize the clinicopathological correlations.
Results:
Between August 2016 and December 2023, 185 brain specimens were collected and pathologically evaluated (SNUHBB: 117; PNUHBB: 27; SMCBB: 34; MJHBB: 7). The age at consent was 70.8±12.6 years, and the age at autopsy was 71.7±12.4 years. The four-most-common clinical diagnoses were Alzheimer’s disease (AD) dementia (20.0%), idiopathic Parkinson’s disease (15.1%), unspecified dementia (11.9%), and cognitively unimpaired (CU) (11.4%).Most cases of unspecified dementia had a pathological diagnosis of central nervous system (CNS) vasculopathy (31.8%) or AD (31.8%). Remarkably, only 14.2% of CU cases had normal pathological findings. The three-most-common pathological diagnoses were AD (26.5%), CNS vasculopathy (14.1%), and Lewy body disease (13.5%).
Conclusions
These clinical and neuropathological findings provide a deeper understanding of the mechanisms underlying NDD in South Korea.
6.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
7.Clinicopathological Correlations of Neurodegenerative Diseases in the National Brain Biobank of Korea
Young Hee JUNG ; Jun Pyo KIM ; Hee Jin KIM ; Hyemin JANG ; Hyun Jeong HAN ; Young Ho KOH ; Duk L. NA ; Yeon-Lim SUH ; Gi Yeong HUH ; Jae-Kyung WON ; Seong-Ik KIM ; Ji-Young CHOI ; Sang Won SEO ; Sung-Hye PARK ; Eun-Joo KIM
Journal of Clinical Neurology 2025;21(3):190-200
Background:
and Purpose The National Brain Biobank of Korea (NBBK) is a brain bank consortium supported by the Korea Disease Control and Prevention Agency and the Korea National Institute of Health, and was launched in 2015 to support research into neurodegenerative disease dementia (NDD). This study aimed to introduce the NBBK and describes clinicopathological correlations based on analyses of data collected from the NBBK.
Methods:
Four hospital-based brain banks have been established in South Korea: Samsung Medical Center Brain Bank (SMCBB), Seoul National University Hospital Brain Bank (SNUHBB), Pusan National University Hospital Brain Bank (PNUHBB), and Myongji Hospital Brain Bank (MJHBB). Clinical and pathological data were collected from these brain banks using standardized protocols. The prevalence rates of clinical and pathological diagnoses were analyzed in order to characterize the clinicopathological correlations.
Results:
Between August 2016 and December 2023, 185 brain specimens were collected and pathologically evaluated (SNUHBB: 117; PNUHBB: 27; SMCBB: 34; MJHBB: 7). The age at consent was 70.8±12.6 years, and the age at autopsy was 71.7±12.4 years. The four-most-common clinical diagnoses were Alzheimer’s disease (AD) dementia (20.0%), idiopathic Parkinson’s disease (15.1%), unspecified dementia (11.9%), and cognitively unimpaired (CU) (11.4%).Most cases of unspecified dementia had a pathological diagnosis of central nervous system (CNS) vasculopathy (31.8%) or AD (31.8%). Remarkably, only 14.2% of CU cases had normal pathological findings. The three-most-common pathological diagnoses were AD (26.5%), CNS vasculopathy (14.1%), and Lewy body disease (13.5%).
Conclusions
These clinical and neuropathological findings provide a deeper understanding of the mechanisms underlying NDD in South Korea.
8.Capsosiphon fulvescens suppresses LPS-stimulated inflammatory responses by suppressing TLR4/NF-κB activation in RAW264.7 murine macrophages
Seon Yeong Ji ; EunJin Bang ; Hyun Hwangbo ; Min Yeong Kim ; Da Hye Kim ; Su Hyun Hong ; Shin- Hyung Park ; Chang-Young Kwon ; Gi-Young Kim ; You-Jin Jeon ; Suengmok Cho ; Yung Hyun Choi
Asian Pacific Journal of Tropical Biomedicine 2024;14(3):115-126
Objective: To evaluate the effects of Capsosiphon fulvescens (C. fulvescens) ethanolic extract on inflammation in lipopolysaccharide (LPS)-induced RAW296.7 macrophages. Methods: The protective effects of C. fulvescens ethanolic extract on LPS-induced inflammation in RAW264.7 macrophages were assessed using biochemical analysis, including enzyme-linked immunosorbent assay, quantitative reverse transcription-polymerase chain reaction, and Western blot analysis. To examine reactive oxygen species (ROS) production, flow cytometry analysis, and immunofluorescence staining were used. Furthermore, the modulatory effect of C. fulvescens ethanolic extract on NF-κB activation was investigated. Results: C. fulvescens ethanolic extract significantly attenuated LPS-induced levels of pro-inflammatory cytokines and notably reduced the secretion and mRNA levels of LPS-mediated matrix metalloproteinases. In addition, C. fulvescens ethanolic extract decreased ROS production and suppressed the TLR4/NF-κB signaling pathway. Conclusions: C. fulvescens ethanolic extract alleviates inflammation as well as oxidative stress by modulating the TLR4/NF-κB signaling in LPS-induced RAW264.7 macrophages. C. fulvescens can be used as a potential therapeutic agent to suppress inflammation and oxidative stress-associated diseases.
9.Asparagi radix alleviates testosterone-induced benign prostatic hyperplasia by inhibiting5α-reductase activity and androgenreceptor signaling pathway
Hyun HWANGBO ; Hee-Jae CHA ; Min Yeong KIM ; Seon Yeong JI ; Da Hye KIM ; Jeong Sook NOH ; Tae Hee KIM ; Heui-Soo KIM ; Sung-Kwon MOON ; Gi-Young KIM ; Yung Hyun CHOI
Nutrition Research and Practice 2024;18(6):793-805
BACKGROUND/OBJECTIVES:
Recently, herbal medicines have gained attention for the treatment of benign prostatic hyperplasia (BPH), a common disease in elderly men. In this study, we aimed to determine the effect of ethanol extract of Asparagi radix (EAR), which is traditionally used to treat various diseases, on BPH development using a testosteroneinduced BPH model.MATERIALS/METHODS: Testosterone propionate (TP)-treated Sprague–Dawley rats were used to establish a BPH model in vivo. EAR was orally administered along with TP, and finasteride was used as a positive control. All rats were sacrificed at the end of the experiment, and pathological changes in the prostate tissue and levels of key biomarkers associated with BPH pathogenesis were assessed.
RESULTS:
Oral administration of EAR significantly inhibited TP-induced BPH by reducing the prostate weight, lumen size, and epithelial thickness in a concentration-dependent manner. EAR also significantly abrogated the expression of 5α-reductase type 2 (SRD5A2), proliferating cell nuclear antigen, and prostate-specific antigen (PSA) induced by TP.Additionally, serum levels of testosterone, dihydrotestosterone, and PSA were elevated in the TP-induced group but decreased in the EAR-treated group. EAR also decreased the expression levels of the androgen receptor (AR) and its coactivators in TP-induced BPH model rats.
CONCLUSION
Our findings revealed that EAR protected against BPH by inhibiting 5α-reductase activity and AR signaling pathway, suggesting its potential for BPH treatment.
10.Asparagi radix alleviates testosterone-induced benign prostatic hyperplasia by inhibiting5α-reductase activity and androgenreceptor signaling pathway
Hyun HWANGBO ; Hee-Jae CHA ; Min Yeong KIM ; Seon Yeong JI ; Da Hye KIM ; Jeong Sook NOH ; Tae Hee KIM ; Heui-Soo KIM ; Sung-Kwon MOON ; Gi-Young KIM ; Yung Hyun CHOI
Nutrition Research and Practice 2024;18(6):793-805
BACKGROUND/OBJECTIVES:
Recently, herbal medicines have gained attention for the treatment of benign prostatic hyperplasia (BPH), a common disease in elderly men. In this study, we aimed to determine the effect of ethanol extract of Asparagi radix (EAR), which is traditionally used to treat various diseases, on BPH development using a testosteroneinduced BPH model.MATERIALS/METHODS: Testosterone propionate (TP)-treated Sprague–Dawley rats were used to establish a BPH model in vivo. EAR was orally administered along with TP, and finasteride was used as a positive control. All rats were sacrificed at the end of the experiment, and pathological changes in the prostate tissue and levels of key biomarkers associated with BPH pathogenesis were assessed.
RESULTS:
Oral administration of EAR significantly inhibited TP-induced BPH by reducing the prostate weight, lumen size, and epithelial thickness in a concentration-dependent manner. EAR also significantly abrogated the expression of 5α-reductase type 2 (SRD5A2), proliferating cell nuclear antigen, and prostate-specific antigen (PSA) induced by TP.Additionally, serum levels of testosterone, dihydrotestosterone, and PSA were elevated in the TP-induced group but decreased in the EAR-treated group. EAR also decreased the expression levels of the androgen receptor (AR) and its coactivators in TP-induced BPH model rats.
CONCLUSION
Our findings revealed that EAR protected against BPH by inhibiting 5α-reductase activity and AR signaling pathway, suggesting its potential for BPH treatment.


Result Analysis
Print
Save
E-mail