1.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
2.Association of Lipoprotein(a) with Progression of Coronary Artery Calcification: Retrospective Longitudinal Study
Anna LEE ; Hyun-Min KOH ; Ji-Yong JANG ; Hye-Rang BAK ; Hye-Jin JANG ; Jun-Young HUH ; Nak-Gyeong KO
Korean Journal of Family Medicine 2025;46(3):176-184
Background:
Atherosclerotic cardiovascular disease (ASCVD) is a major health concern, and lipoprotein(a) (Lp(a)) is an independent risk factor. However, there is limited evidence regarding Lp(a) and the risk of ASCVD in Asian populations. This study aimed to assess the predictive value of changes in coronary artery calcification (CAC) for ASCVD risk associated with Lp(a) level.
Methods:
Participants (n=2,750) were grouped according to their Lp(a) levels, and the association between Lp(a) and CAC progression was examined. CAC progression was defined as the occurrence of incident CAC or a difference ≥2.5 between the square root (√) of baseline and follow-up coronary artery calcium scores (CACSs) (Δ√transformed CACS). To adjust for differences in follow-up periods, Δ√transformed CACS was divided by the follow- up period (in years).
Results:
Over an average follow-up of 3.07 years, 18.98% of participants experienced CAC progression. Those with disease progression had notably higher Lp(a) levels. Higher Lp(a) tertiles correlated with increased baseline and follow-up CACS, CAC progression (%), and Δ√transformed CACS. Even after adjustment, higher Lp(a) levels were associated with CAC progression. However, annualized Δ√transformed CACS analysis yielded no significant results.
Conclusion
This study demonstrated an association between elevated Lp(a) levels and CAC progression in a general population without ASCVD. However, longer-term follow-up studies are needed to obtain meaningful results regarding CAC progression. Further research is necessary to utilize Lp(a) level as a predictor of cardiovascular disease and to establish clinically relevant thresholds specific to the Korean population.
3.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
4.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
5.Association of Lipoprotein(a) with Progression of Coronary Artery Calcification: Retrospective Longitudinal Study
Anna LEE ; Hyun-Min KOH ; Ji-Yong JANG ; Hye-Rang BAK ; Hye-Jin JANG ; Jun-Young HUH ; Nak-Gyeong KO
Korean Journal of Family Medicine 2025;46(3):176-184
Background:
Atherosclerotic cardiovascular disease (ASCVD) is a major health concern, and lipoprotein(a) (Lp(a)) is an independent risk factor. However, there is limited evidence regarding Lp(a) and the risk of ASCVD in Asian populations. This study aimed to assess the predictive value of changes in coronary artery calcification (CAC) for ASCVD risk associated with Lp(a) level.
Methods:
Participants (n=2,750) were grouped according to their Lp(a) levels, and the association between Lp(a) and CAC progression was examined. CAC progression was defined as the occurrence of incident CAC or a difference ≥2.5 between the square root (√) of baseline and follow-up coronary artery calcium scores (CACSs) (Δ√transformed CACS). To adjust for differences in follow-up periods, Δ√transformed CACS was divided by the follow- up period (in years).
Results:
Over an average follow-up of 3.07 years, 18.98% of participants experienced CAC progression. Those with disease progression had notably higher Lp(a) levels. Higher Lp(a) tertiles correlated with increased baseline and follow-up CACS, CAC progression (%), and Δ√transformed CACS. Even after adjustment, higher Lp(a) levels were associated with CAC progression. However, annualized Δ√transformed CACS analysis yielded no significant results.
Conclusion
This study demonstrated an association between elevated Lp(a) levels and CAC progression in a general population without ASCVD. However, longer-term follow-up studies are needed to obtain meaningful results regarding CAC progression. Further research is necessary to utilize Lp(a) level as a predictor of cardiovascular disease and to establish clinically relevant thresholds specific to the Korean population.
6.Association of Lipoprotein(a) with Progression of Coronary Artery Calcification: Retrospective Longitudinal Study
Anna LEE ; Hyun-Min KOH ; Ji-Yong JANG ; Hye-Rang BAK ; Hye-Jin JANG ; Jun-Young HUH ; Nak-Gyeong KO
Korean Journal of Family Medicine 2025;46(3):176-184
Background:
Atherosclerotic cardiovascular disease (ASCVD) is a major health concern, and lipoprotein(a) (Lp(a)) is an independent risk factor. However, there is limited evidence regarding Lp(a) and the risk of ASCVD in Asian populations. This study aimed to assess the predictive value of changes in coronary artery calcification (CAC) for ASCVD risk associated with Lp(a) level.
Methods:
Participants (n=2,750) were grouped according to their Lp(a) levels, and the association between Lp(a) and CAC progression was examined. CAC progression was defined as the occurrence of incident CAC or a difference ≥2.5 between the square root (√) of baseline and follow-up coronary artery calcium scores (CACSs) (Δ√transformed CACS). To adjust for differences in follow-up periods, Δ√transformed CACS was divided by the follow- up period (in years).
Results:
Over an average follow-up of 3.07 years, 18.98% of participants experienced CAC progression. Those with disease progression had notably higher Lp(a) levels. Higher Lp(a) tertiles correlated with increased baseline and follow-up CACS, CAC progression (%), and Δ√transformed CACS. Even after adjustment, higher Lp(a) levels were associated with CAC progression. However, annualized Δ√transformed CACS analysis yielded no significant results.
Conclusion
This study demonstrated an association between elevated Lp(a) levels and CAC progression in a general population without ASCVD. However, longer-term follow-up studies are needed to obtain meaningful results regarding CAC progression. Further research is necessary to utilize Lp(a) level as a predictor of cardiovascular disease and to establish clinically relevant thresholds specific to the Korean population.
7.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
8.Association of Lipoprotein(a) with Progression of Coronary Artery Calcification: Retrospective Longitudinal Study
Anna LEE ; Hyun-Min KOH ; Ji-Yong JANG ; Hye-Rang BAK ; Hye-Jin JANG ; Jun-Young HUH ; Nak-Gyeong KO
Korean Journal of Family Medicine 2025;46(3):176-184
Background:
Atherosclerotic cardiovascular disease (ASCVD) is a major health concern, and lipoprotein(a) (Lp(a)) is an independent risk factor. However, there is limited evidence regarding Lp(a) and the risk of ASCVD in Asian populations. This study aimed to assess the predictive value of changes in coronary artery calcification (CAC) for ASCVD risk associated with Lp(a) level.
Methods:
Participants (n=2,750) were grouped according to their Lp(a) levels, and the association between Lp(a) and CAC progression was examined. CAC progression was defined as the occurrence of incident CAC or a difference ≥2.5 between the square root (√) of baseline and follow-up coronary artery calcium scores (CACSs) (Δ√transformed CACS). To adjust for differences in follow-up periods, Δ√transformed CACS was divided by the follow- up period (in years).
Results:
Over an average follow-up of 3.07 years, 18.98% of participants experienced CAC progression. Those with disease progression had notably higher Lp(a) levels. Higher Lp(a) tertiles correlated with increased baseline and follow-up CACS, CAC progression (%), and Δ√transformed CACS. Even after adjustment, higher Lp(a) levels were associated with CAC progression. However, annualized Δ√transformed CACS analysis yielded no significant results.
Conclusion
This study demonstrated an association between elevated Lp(a) levels and CAC progression in a general population without ASCVD. However, longer-term follow-up studies are needed to obtain meaningful results regarding CAC progression. Further research is necessary to utilize Lp(a) level as a predictor of cardiovascular disease and to establish clinically relevant thresholds specific to the Korean population.
9.Predictive value and optimal cut-off level of high-sensitivity troponin T in patients with acute pulmonary embolism
Moojun KIM ; Chang-Ok SEO ; Yong-Lee KIM ; Hangyul KIM ; Hye Ree KIM ; Yun Ho CHO ; Jeong Yoon JANG ; Jong-Hwa AHN ; Min Gyu KANG ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin Yong HWANG ; Jeong Rang PARK
The Korean Journal of Internal Medicine 2025;40(1):65-77
Background/Aims:
Elevated troponin levels predict in-hospital mortality and influence decisions regarding thrombolytic therapy in patients with acute pulmonary embolism (PE). However, the usefulness of high-sensitivity troponin T (hsTnT) regarding PE remains uncertain. We aimed to establish the optimal cut-off level and compare its performance for precise risk stratification.
Methods:
374 patients diagnosed with acute PE were reviewed. PE-related adverse outcomes, a composite of PE-related deaths, cardiopulmonary resuscitation incidents, systolic blood pressure < 90 mmHg, and all-cause mortality within 30 days were evaluated. The optimal hsTnT cut-off for all-cause mortality, and the net reclassification index (NRI) was used to assess the incremental value in risk stratification.
Results:
Among 343 normotensive patients, 17 (5.0%) experienced all-cause mortality, while 40 (10.7%) had PE-related adverse outcomes. An optimal hsTnT cut-off value of 60 ng/L for all-cause mortality (AUC 0.74, 95% CI 0.61–0.85, p < 0.001) was identified, which was significantly associated with PE-related adverse outcomes (OR 4.07, 95% CI 2.06–8.06, p < 0.001). Patients with hsTnT ≥ 60 ng/L were older, hypotensive, had higher creatinine levels, and right ventricular dysfunction signs. Combining hsTnT ≥ 60 ng/L with simplified pulmonary embolism severity index ≥1 provided additional prognostic information. Reclassification analysis showed a significant shift in risk categories, with an NRI of 1.016 ± 0.201 (p < 0.001).
Conclusions
We refined troponin’s predictive value in patients with acute PE, proposing a new cut-off value of hsTnT ≥ 60 ng/L. Validation through large-scale studies is essential to offer clinically useful guidance for managing patient population.
10.Influence of an abnormal ankle-brachial index on ischemic and bleeding events in patients undergoing percutaneous coronary intervention
Hangyul KIM ; Seung Do LEE ; Hyo Jin LEE ; Hye Ree KIM ; Kyehwan KIM ; Jin-Sin KOH ; Seok-Jae HWANG ; Jin-Yong HWANG ; Jong-Hwa AHN ; Yongwhi PARK ; Young-Hoon JEONG ; Jeong Rang PARK ; Min Gyu KANG
The Korean Journal of Internal Medicine 2023;38(3):372-381
Background/Aims:
Bleeding events after percutaneous coronary intervention (PCI) have important prognostic implications. Data on the influence of an abnormal ankle-brachial index (ABI) on both ischemic and bleeding events in patients undergoing PCI are limited.
Methods:
We included patients who underwent PCI with available ABI data (abnormal ABI, ≤ 0.9 or > 1.4). The primary endpoint was the composite of all-cause death, myocardial infarction (MI), stroke, and major bleeding.
Results:
Among 4,747 patients, an abnormal ABI was observed in 610 patients (12.9%). During follow-up (median, 31 months), the 5-year cumulative incidence of adverse clinical events was higher in the abnormal ABI group than in the normal ABI group: primary endpoint (36.0% vs. 14.5%, log-rank test, p < 0.001); all-cause death (19.4% vs. 5.1%, log-rank test, p < 0.001); MI (6.3% vs. 4.1%, log-rank test, p = 0.013); stroke (6.2% vs. 2.7%, log-rank test, p = 0.001); and major bleeding (8.9% vs. 3.7%, log-rank test, p < 0.001). An abnormal ABI was an independent risk factor for all-cause death (hazard ratio [HR], 3.05; p < 0.001), stroke (HR, 1.79; p = 0.042), and major bleeding (HR, 1.61; p = 0.034).
Conclusions
An abnormal ABI is a risk factor for both ischemic and bleeding events after PCI. Our study findings may be helpful in determining the optimal method for secondary prevention after PCI.

Result Analysis
Print
Save
E-mail