1.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
2.The impact of the laboratory quality management program on colorectal cancer screening using immunochemical fecal occult blood tests in Korea
Hye Ryun LEE ; Sollip KIM ; Hyeongsu KIM ; Yeo-Min YUN ; Ho Jin JEONG ; Minje HAN ; Myeong Hee KIM ; Tae-Hyun UM ; You Kyoung LEE ; Byung Ryul JEON ; Kunsei LEE ; Sail CHUN
Journal of the Korean Medical Association 2025;68(5):338-347
Purpose:
Immunochemical fecal occult blood tests (iFOBT) have been utilized as the primary method for colorectal cancer screening within Korea's National Cancer Screening Program. This study aimed to evaluate the impact of the accreditation program for clinical laboratories and external quality assessment (EQA) programs on colorectal cancer screening.
Methods:
We analyzed the false-positive rates of iFOBT in colorectal cancer screening from 2016 to 2020 according to participation and performance in the Outstanding Laboratory Accreditation Program (OLAP) conducted by the Laboratory Medicine Foundation, and the External Quality Assessment programs run by the Korean Association of External Quality Assessment Service.
Results:
False-positive rates of iFOBT were lower among institutions accredited by OLAP (2.35%) compared with non-accredited (3.04%) and non-participating institutions (5.60%). Similarly, institutions participating in the EQA program exhibited lower false-positive rates (3.79%) compared to non-participants (7.04%). Within the iFOBT-specific EQA program, institutions that passed demonstrated the lowest false-positive rate (3.37%), while failing institutions showed the highest rate (9.07%), surpassing even non-participating institutions (6.44%).
Conclusion
Participation in quality management programs such as OLAP and EQA was associated with lower false-positive rates in iFOBT for colorectal cancer screening. These findings suggest that quality management initiatives can increase the accuracy of iFOBT, potentially improving the effectiveness of colorectal cancer screening programs, and reducing unnecessary follow-up procedures and associated healthcare costs.
3.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
4.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
5.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
6.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
7.The impact of the laboratory quality management program on colorectal cancer screening using immunochemical fecal occult blood tests in Korea
Hye Ryun LEE ; Sollip KIM ; Hyeongsu KIM ; Yeo-Min YUN ; Ho Jin JEONG ; Minje HAN ; Myeong Hee KIM ; Tae-Hyun UM ; You Kyoung LEE ; Byung Ryul JEON ; Kunsei LEE ; Sail CHUN
Journal of the Korean Medical Association 2025;68(5):338-347
Purpose:
Immunochemical fecal occult blood tests (iFOBT) have been utilized as the primary method for colorectal cancer screening within Korea's National Cancer Screening Program. This study aimed to evaluate the impact of the accreditation program for clinical laboratories and external quality assessment (EQA) programs on colorectal cancer screening.
Methods:
We analyzed the false-positive rates of iFOBT in colorectal cancer screening from 2016 to 2020 according to participation and performance in the Outstanding Laboratory Accreditation Program (OLAP) conducted by the Laboratory Medicine Foundation, and the External Quality Assessment programs run by the Korean Association of External Quality Assessment Service.
Results:
False-positive rates of iFOBT were lower among institutions accredited by OLAP (2.35%) compared with non-accredited (3.04%) and non-participating institutions (5.60%). Similarly, institutions participating in the EQA program exhibited lower false-positive rates (3.79%) compared to non-participants (7.04%). Within the iFOBT-specific EQA program, institutions that passed demonstrated the lowest false-positive rate (3.37%), while failing institutions showed the highest rate (9.07%), surpassing even non-participating institutions (6.44%).
Conclusion
Participation in quality management programs such as OLAP and EQA was associated with lower false-positive rates in iFOBT for colorectal cancer screening. These findings suggest that quality management initiatives can increase the accuracy of iFOBT, potentially improving the effectiveness of colorectal cancer screening programs, and reducing unnecessary follow-up procedures and associated healthcare costs.
8.Tanshinone, a Natural NADPH Oxidase Inhibitor, Mitigates Testosterone-Induced Hair Loss
Yeo Kyu HUR ; Jin Yeong CHAE ; Min Hye CHOI ; Kkotnara PARK ; Da-Woon BAE ; Soo-Bong PARK ; Sun-Shin CHA ; Hye Eun LEE ; In Hye LEE ; Yun Soo BAE
Biomolecules & Therapeutics 2025;33(1):210-220
Previous studies have shown that testosterone activates the GPRC6A-Duox1 axis, resulting in the production of H 2O 2 which leads to the apoptosis of keratinocytes and ultimately hair loss. Here, we elucidated a molecular mechanism by which the non-genomic action of testosterone regulates cellular redox status in androgenetic alopecia (AGA). Building upon this molecular understanding, we conducted a high-throughput screening assay of Nox inhibitors from a natural compounds library. This screening identified diterpenoid compounds, specifically Tanshinone I, Tanshinone IIA, Tanshinone IIB, and Cryptotanshinone, derived from Salviae Miltiorrhizae Radix. The IC50 values for Nox isozymes were found to be 2.6-12.9 μM for Tanshinone I, 1.9-7.2 μM for Tanshinone IIA, 5.2-11.9 μM for Tanshinone IIB, and 2.1-7.9 μM for Cryptotanshinone. Furthermore, 3D computational docking analysis confirmed the structural basis by which Tanshinone compounds inhibit Nox activity. These compounds were observed to substitute for NADPH at the π-π bond site between NADPH and FAD, leading to the suppression of Nox activity. Notably, Tanshinone I and Tanshinone IIA effectively inhibited Nox activity heightened by testosterone, consequently reducing the production of intracellular H2O2 and preventing cell apoptosis. In an animal study involving the application of testosterone to the back skin of 8-week-old C57BL/6J mice to inhibit hair growth, subsequent treatment with Tanshinone I or Tanshinone IIA alongside testosterone resulted in a substantial increase in hair follicle length compared to testosterone treatment alone. These findings underscore the potential efficacy of Tanshinone I and Tanshinone IIA as therapeutic agents for AGA by inhibiting Nox activity.
9.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
Background:
An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits.
Methods:
This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort.
Results:
The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits.
Conclusion
The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs.
10.The impact of the laboratory quality management program on colorectal cancer screening using immunochemical fecal occult blood tests in Korea
Hye Ryun LEE ; Sollip KIM ; Hyeongsu KIM ; Yeo-Min YUN ; Ho Jin JEONG ; Minje HAN ; Myeong Hee KIM ; Tae-Hyun UM ; You Kyoung LEE ; Byung Ryul JEON ; Kunsei LEE ; Sail CHUN
Journal of the Korean Medical Association 2025;68(5):338-347
Purpose:
Immunochemical fecal occult blood tests (iFOBT) have been utilized as the primary method for colorectal cancer screening within Korea's National Cancer Screening Program. This study aimed to evaluate the impact of the accreditation program for clinical laboratories and external quality assessment (EQA) programs on colorectal cancer screening.
Methods:
We analyzed the false-positive rates of iFOBT in colorectal cancer screening from 2016 to 2020 according to participation and performance in the Outstanding Laboratory Accreditation Program (OLAP) conducted by the Laboratory Medicine Foundation, and the External Quality Assessment programs run by the Korean Association of External Quality Assessment Service.
Results:
False-positive rates of iFOBT were lower among institutions accredited by OLAP (2.35%) compared with non-accredited (3.04%) and non-participating institutions (5.60%). Similarly, institutions participating in the EQA program exhibited lower false-positive rates (3.79%) compared to non-participants (7.04%). Within the iFOBT-specific EQA program, institutions that passed demonstrated the lowest false-positive rate (3.37%), while failing institutions showed the highest rate (9.07%), surpassing even non-participating institutions (6.44%).
Conclusion
Participation in quality management programs such as OLAP and EQA was associated with lower false-positive rates in iFOBT for colorectal cancer screening. These findings suggest that quality management initiatives can increase the accuracy of iFOBT, potentially improving the effectiveness of colorectal cancer screening programs, and reducing unnecessary follow-up procedures and associated healthcare costs.

Result Analysis
Print
Save
E-mail