1.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
		                        		
		                        			 Background:
		                        			An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits. 
		                        		
		                        			Methods:
		                        			This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort. 
		                        		
		                        			Results:
		                        			The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits. 
		                        		
		                        			Conclusion
		                        			The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs. 
		                        		
		                        		
		                        		
		                        	
2.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
		                        		
		                        			
		                        			 Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus. 
		                        		
		                        		
		                        		
		                        	
3.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
		                        		
		                        			
		                        			 Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus. 
		                        		
		                        		
		                        		
		                        	
4.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
		                        		
		                        			
		                        			 Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus. 
		                        		
		                        		
		                        		
		                        	
5.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
		                        		
		                        			 Background:
		                        			An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits. 
		                        		
		                        			Methods:
		                        			This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort. 
		                        		
		                        			Results:
		                        			The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits. 
		                        		
		                        			Conclusion
		                        			The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs. 
		                        		
		                        		
		                        		
		                        	
6.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
		                        		
		                        			 Background:
		                        			An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits. 
		                        		
		                        			Methods:
		                        			This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort. 
		                        		
		                        			Results:
		                        			The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits. 
		                        		
		                        			Conclusion
		                        			The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs. 
		                        		
		                        		
		                        		
		                        	
7.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
		                        		
		                        			
		                        			 Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus. 
		                        		
		                        		
		                        		
		                        	
8.Development of a Machine LearningPowered Optimized Lung Allocation System for Maximum Benefits in Lung Transplantation: A Korean National Data
Mihyang HA ; Woo Hyun CHO ; Min Wook SO ; Daesup LEE ; Yun Hak KIM ; Hye Ju YEO
Journal of Korean Medical Science 2025;40(7):e18-
		                        		
		                        			 Background:
		                        			An ideal lung allocation system should reduce waiting list deaths, improve transplant survival, and ensure equitable organ allocation. This study aimed to develop a novel lung allocation score (LAS) system, the MaxBenefit LAS, to maximize transplant benefits. 
		                        		
		                        			Methods:
		                        			This study retrospectively analyzed data from the Korean Network for Organ Sharing database, including 1,599 lung transplant candidates between September 2009 and December 2020. We developed the MaxBenefit LAS, combining a waitlist mortality model and a post-transplant survival model using elastic-net Cox regression, was assessed using area under the curve (AUC) values and Uno’s C-index. Its performance was compared to the US LAS in an independent cohort. 
		                        		
		                        			Results:
		                        			The waitlist mortality model showed strong predictive performance with AUC values of 0.834 and 0.818 in the training and validation cohorts, respectively. The post-transplant survival model also demonstrated good predictive ability (AUC: 0.708 and 0.685). The MaxBenefit LAS effectively stratified patients by risk, with higher scores correlating with increased waitlist mortality and decreased post-transplant mortality. The MaxBenefit LAS outperformed the conventional LAS in predicting waitlist death and identifying candidates with higher transplant benefits. 
		                        		
		                        			Conclusion
		                        			The MaxBenefit LAS offers a promising approach to optimizing lung allocation by balancing the urgency of candidates with their likelihood of survival post-transplant. This novel system has the potential to improve outcomes for lung transplant recipients and reduce waitlist mortality, providing a more equitable allocation of donor lungs. 
		                        		
		                        		
		                        		
		                        	
9.Radiofrequency Ablation for Recurrent Thyroid Cancers:2025 Korean Society of Thyroid Radiology Guideline
Eun Ju HA ; Min Kyoung LEE ; Jung Hwan BAEK ; Hyun Kyung LIM ; Hye Shin AHN ; Seon Mi BAEK ; Yoon Jung CHOI ; Sae Rom CHUNG ; Ji-hoon KIM ; Jae Ho SHIN ; Ji Ye LEE ; Min Ji HONG ; Hyun Jin KIM ; Leehi JOO ; Soo Yeon HAHN ; So Lyung JUNG ; Chang Yoon LEE ; Jeong Hyun LEE ; Young Hen LEE ; Jeong Seon PARK ; Jung Hee SHIN ; Jin Yong SUNG ; Miyoung CHOI ; Dong Gyu NA ;
Korean Journal of Radiology 2025;26(1):10-28
		                        		
		                        			
		                        			 Radiofrequency ablation (RFA) is a minimally invasive treatment modality used as an alternative to surgery in patients with benign thyroid nodules, recurrent thyroid cancers (RTCs), and primary thyroid microcarcinomas. The Korean Society of Thyroid Radiology (KSThR) initially developed recommendations for the optimal use of RFA for thyroid tumors in 2009 and revised them in 2012 and 2017. As new meaningful evidence has accumulated since 2017 and in response to a growing global interest in the use of RFA for treating malignant thyroid lesions, the task force committee members of the KSThR decided to update the guidelines on the use of RFA for the management of RTCs based on a comprehensive analysis of current literature and expert consensus. 
		                        		
		                        		
		                        		
		                        	
10.Characteristics of Pediatric Ulcerative Colitis at Diagnosis in Korea: Results From a Multicenter, Registry-Based, Inception Cohort Study
Jin Gyu LIM ; Ben KANG ; Seak Hee OH ; Eell RYOO ; Yu Bin KIM ; Yon Ho CHOE ; Yeoun Joo LEE ; Minsoo SHIN ; Hye Ran YANG ; Soon Chul KIM ; Yoo Min LEE ; Hong KOH ; Ji Sook PARK ; So Yoon CHOI ; Su Jin JEONG ; Yoon LEE ; Ju Young CHANG ; Tae Hyeong KIM ; Jung Ok SHIM ; Jin Soo MOON
Journal of Korean Medical Science 2024;39(49):e303-
		                        		
		                        			 Background:
		                        			We aimed to investigate the characteristics of pediatric ulcerative colitis (UC) at diagnosis in Korea. 
		                        		
		                        			Methods:
		                        			This was a multicenter, registry-based, inception cohort study conducted in Korea between 2021 and 2023. Children and adolescents newly diagnosed with UC < 18 years were included. Baseline clinicodemographics, results from laboratory, endoscopic exams, and Paris classification factors were collected, and associations between factors at diagnosis were investigated. 
		                        		
		                        			Results:
		                        			A total 205 patients with UC were included. Male-to-female ratio was 1.59:1, and the median age at diagnosis was 14.7 years (interquartile range 11.9–16.2). Disease extent of E1 comprised 12.2% (25/205), E2 24.9% (51/205), E3 11.2% (23/205), and E4 51.7% (106/205) of the patients. S1 comprised 13.7% (28/205) of the patients. The proportion of patients with a disease severity of S1 was significantly higher in patients with E4 compared to the other groups (E1: 0% vs. E2: 2% vs. E3: 0% vs. E4: 24.5%, P < 0.001). Significant differences between disease extent groups were also observed in Pediatric Ulcerative Colitis Activity Index (median 25 vs. 35 vs. 40 vs. 45, respectively, P < 0.001), hemoglobin (median 13.5 vs.13.2 vs. 11.6 vs. 11.4 g/dL, respectively, P < 0.001), platelet count (median 301 vs. 324 vs. 372 vs. 377 × 103 /μL, respectively, P = 0.001), C-reactive protein (median 0.05 vs. 0.10 vs. 0.17 vs. 0.38 mg/dL, respectively, P < 0.001), and Ulcerative Colitis Endoscopic Index of Severity (median 4 vs. 4 vs. 4 vs. 5, respectively, P = 0.006). No significant differences were observed in factors between groups divided according to sex and diagnosis age. 
		                        		
		                        			Conclusion
		                        			This study represents the largest multicenter pediatric inflammatory bowel disease cohort in Korea. Disease severity was associated with disease extent in pediatric patients with UC at diagnosis. 
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail