1.Protective effect of intervention with cannabinoid type-2 receptor agonist JWH133 on pulmonary fibrosis in mice.
Xiao WU ; Wen Ting YANG ; Yi Ju CHENG ; Lin PAN ; Yu Quan ZHANG ; Hong Lan ZHU ; Meng Lin ZHANG
Chinese Journal of Internal Medicine 2023;62(7):841-849
		                        		
		                        			
		                        			Objective: JWH133, a cannabinoid type 2 receptor agonist, was tested for its ability to protect mice from bleomycin-induced pulmonary fibrosis. Methods: By using a random number generator, 24 C57BL/6J male mice were randomly divided into the control group, model group, JWH133 intervention group, and JWH133+a cannabinoid type-2 receptor antagonist (AM630) inhibitor group, with 6 mice in each group. A mouse pulmonary fibrosis model was established by tracheal instillation of bleomycin (5 mg/kg). Starting from the first day after modeling, the control group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution, and the model group mice were intraperitoneally injected with 0.1 ml of 0.9% sodium chloride solution. The JWH133 intervention group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg, dissolved in physiological saline), and the JWH133+AM630 antagonistic group mice were intraperitoneally injected with 0.1 ml of JWH133 (2.5 mg/kg) and AM630 (2.5 mg/kg). After 28 days, all mice were killed; the lung tissue was obtained, pathological changes were observed, and alveolar inflammation scores and Ashcroft scores were calculated. The content of type Ⅰ collagen in the lung tissue of the four groups of mice was measured using immunohistochemistry. The levels of interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in the serum of the four groups of mice were measured using enzyme-linked immunosorbent assay (ELISA), and the content of hydroxyproline (HYP) in the lung tissue of the four groups of mice was measured. Western blotting was used to measure the protein expression levels of type Ⅲ collagen, α-smooth muscle actin (α-SMA), extracellular signal regulated kinase (ERK1/2), phosphorylated P-ERK1/2 (P-ERK1/2), and phosphorylated ribosome S6 kinase type 1 (P-p90RSK) in the lung tissue of mice in the four groups. Real-time quantitative polymerase chain reaction was used to measure the expression levels of collagen Ⅰ, collagen Ⅲ, and α-SMA mRNA in the lung tissue of the four groups of mice. Results: Compared with the control group, the pathological changes in the lung tissue of the model group mice worsened, with an increase in alveolar inflammation score (3.833±0.408 vs. 0.833±0.408, P<0.05), an increase in Ashcroft score (7.333±0.516 vs. 2.000±0.633, P<0.05), an increase in type Ⅰ collagen absorbance value (0.065±0.008 vs. 0.018±0.006, P<0.05), an increase in inflammatory cell infiltration, and an increase in hydroxyproline levels [(1.551±0.051) μg/mg vs. (0.974±0.060) μg/mg, P<0.05]. Compared with the model group, the JWH133 intervention group showed reduced pathological changes in lung tissue, decreased alveolar inflammation score (1.833±0.408, P<0.05), decreased Ashcroft score (4.167±0.753, P<0.05), decreased type Ⅰ collagen absorbance value (0.032±0.004, P<0.05), reduced inflammatory cell infiltration, and decreased hydroxyproline levels [(1.148±0.055) μg/mg, P<0.05]. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group showed more severe pathological changes in the lung tissue of mice, increased alveolar inflammation score and Ashcroft score, increased type Ⅰ collagen absorbance value, increased inflammatory cell infiltration, and increased hydroxyproline levels. Compared with the control group, the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK proteins in the lung tissue of the model group mice increased, while the expression of type Ⅰ collagen, type Ⅲ collagen, and α-SMA mRNA increased. Compared with the model group, the protein expression of α-SMA (relative expression 0.60±0.17 vs. 1.34±0.19, P<0.05), type Ⅲ collagen (relative expression 0.52±0.09 vs. 1.35±0.14, P<0.05), P-ERK1/2 (relative expression 0.32±0.11 vs. 1.14±0.14, P<0.05), and P-p90RSK (relative expression 0.43±0.14 vs. 1.15±0.07, P<0.05) decreased in the JWH133 intervention group. The type Ⅰ collagen mRNA (2.190±0.362 vs. 5.078±0.792, P<0.05), type Ⅲ collagen mRNA (1.750±0.290 vs. 4.935±0.456, P<0.05), and α-SMA mRNA (1.588±0.060 vs. 5.192±0.506, P<0.05) decreased. Compared with the JWH133 intervention group, the JWH133+AM630 antagonistic group increased the expression of α-SMA, type Ⅲ collagen, P-ERK1/2, and P-p90RSK protein in the lung tissue of mice, and increased the expression of type Ⅲ collagen and α-SMA mRNA. Conclusion: In mice with bleomycin-induced pulmonary fibrosis, the cannabinoid type-2 receptor agonist JWH133 inhibited inflammation and improved extracellular matrix deposition, which alleviated lung fibrosis. The underlying mechanism of action may be related to the activation of the ERK1/2-RSK1 signaling pathway.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Pulmonary Fibrosis/pathology*
		                        			;
		                        		
		                        			Cannabinoid Receptor Agonists/metabolism*
		                        			;
		                        		
		                        			Collagen Type I/pharmacology*
		                        			;
		                        		
		                        			Collagen Type III/pharmacology*
		                        			;
		                        		
		                        			Hydroxyproline/pharmacology*
		                        			;
		                        		
		                        			Sodium Chloride/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Cannabinoids/adverse effects*
		                        			;
		                        		
		                        			Bleomycin/metabolism*
		                        			;
		                        		
		                        			Collagen/metabolism*
		                        			;
		                        		
		                        			Inflammation/pathology*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			
		                        		
		                        	
2.Protective effect of metformin on pulmonary fibrosis caused by paraquat through activating AMP-activated protein kinase pathway.
Tongying LIU ; Lihong GAO ; Jianhong WANG ; Liaozhang WU ; Manhong ZHOU
Chinese Critical Care Medicine 2023;35(12):1309-1315
		                        		
		                        			OBJECTIVE:
		                        			To observe whether metformin (MET) inhibits transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway by activating adenosine activated protein kinase (AMPK), so as to alleviate the pulmonary fibrosis caused by paraquat (PQ) poisoning in mice.
		                        		
		                        			METHODS:
		                        			Male C57BL/6J mice were randomly divided into the Control group, PQ poisoning model group (PQ group), MET intervention group (PQ+MET group), AMPK agonist group (PQ+AICAR group), and AMPK inhibitor group (PQ+MET+CC group), according to a random number table method. A mouse model of PQ poisoning was established by one-time peritoneal injection of 1 mL PQ solution (20 mg/kg). The Control group was injected with the same volume of normal saline. After 2 hours of modeling, the PQ+MET group was given 2 mL of 200 mg/kg MET solution by gavage, the PQ+AICAR group was given 2 mL of 200 mg/kg AICAR solution by intraperitoneal injection, the PQ+MET+CC group was given 2 mL of 200 mg/kg MET solution by gavage and then 1 mL complex C (CC) solution (20 mg/kg) was intraperitoneally injected, the Control group and PQ group were given 2 mL of normal saline by gavage. The intervention was given once a day for 21 consecutive days. The 21-day survival rate of ten mice in each group was calculated, and the lung tissues of remaining mice were collected at 21 days after modeling. The pathological changes of lung tissues were observed under light microscope after hematoxylin-eosin (HE) staining and Masson staining, and the degree of pulmonary fibrosis was evaluated by Ashcroft score. The content of hydroxyproline in lung tissue and oxidative stress indicators such as malondialdehyde (MDA) and superoxide dismutase (SOD) were detected. The protein expressions of E-cadherin, α-smooth muscle actin (α-SMA), phosphorylated AMPK (p-AMPK), TGF-β1 and phosphorylated Smad3 (p-Smad3) in lung tissue were detected by Western blotting.
		                        		
		                        			RESULTS:
		                        			Compared with the Control group, the 21 days survival rate was significantly reduced, lung fibrosis and Ashcroft score were significantly increased in PQ group. In addition, the content of hydroxyproline, MDA and the protein expressions of α-SMA, TGF-β1 and p-Smad3 in lung tissue were significantly increased, while the activity of SOD and the protein expressions of E-cadherin and p-AMPK were significantly decreased in PQ group. Compared with the PQ group, the 21 days survival rates of mice were significantly improved in the PQ+MET group and PQ+AICAR group (70%, 60% vs. 20%, both P < 0.05). The degree of pulmonary fibrosis and the Ashcroft score were significantly reduced (1.50±0.55, 2.00±0.63 vs. 6.67±0.52, both P < 0.05). The content of hydroxyproline and MDA in lung tissue, as well as α-SMA, TGF-β1 and p-Smad3 protein expressions were significantly reduced [hydroxyproline (mg/L): 2.03±0.11, 3.00±0.85 vs. 4.92±0.65, MDA (kU/g): 2.06±1.48, 2.10±1.80 vs. 4.06±1.33, α-SMA/GAPDH: 0.23±0.06, 0.16±0.06 vs. 1.00±0.09, TGF-β1/GAPDH: 0.28±0.03, 0.53±0.05 vs. 0.92±0.06 p-Smad3/GAPDH: 0.52±0.04, 0.69±0.06 vs. 1.11±0.10, all P < 0.05], SOD activity and the protein expressions of E-cadherin and p-AMPK were significantly increased [SOD (μmol/g): 39.76±1.35, 33.03±1.28 vs. 20.08±1.79, E-cadherin/GAPDH: 0.91±0.08, 0.72±0.08 vs. 0.26±0.04, p-AMPK/GAPDH: 0.62±0.04, 0.60±0.01 vs. 0.20±0.04, all P < 0.05]. However, these protective effects of MET were inhibited by the addition of AMPK inhibitor CC solution.
		                        		
		                        			CONCLUSIONS
		                        			MET can effectively alleviate the degree of pulmonary fibrosis in mice poisoned with PQ, and its mechanism may be related to the activation of AMPK and inhibition of TGF-β1/Smad3 signaling pathway, which can be inhibited by AMPK inhibitor CC.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Pulmonary Fibrosis/drug therapy*
		                        			;
		                        		
		                        			Paraquat
		                        			;
		                        		
		                        			AMP-Activated Protein Kinases/pharmacology*
		                        			;
		                        		
		                        			Metformin/pharmacology*
		                        			;
		                        		
		                        			Hydroxyproline/pharmacology*
		                        			;
		                        		
		                        			Saline Solution
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Lung/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/pharmacology*
		                        			;
		                        		
		                        			Cadherins
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			
		                        		
		                        	
3.Hydroxynitone suppresses hepatic stellate cell activation by inhibiting TGF-β1 phosphorylation to alleviate CCl4-induced liver fibrosis in rats.
Zhi Bin ZHAO ; Hui DONG ; Bing Hang LI ; Bo SHEN ; Yue Cheng GUO ; Tian Yu GU ; Ying QU ; Xiao Bo CAI ; Lun Gen LU
Journal of Southern Medical University 2022;42(10):1511-1516
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of hydronidone on CCl4-induced liver fibrosis in rats and explore the possible mechanism.
		                        		
		                        			METHODS:
		                        			Sixty-six male SD rats were randomized into 5 groups, including a control group (n=10), a liver fibrosis model group (n=20), 2 hydronidone dose groups (100 and 250 mg/kg; n=12), and a pirfenidone (250 mg/kg) treatment group (n= 12). Rat models of liver fibrosis were established by subcutaneous injection of CCl4 in all but the control group. Hydronidone and pirfenidone were given daily at the indicated doses by intragastric administration for 6 weeks. After the treatments, serum samples were collected from the rats for detecting liver function parameters, and hydroxyproline content in the liver tissue was determined. Inflammation and fibrosis in the liver tissue were observed using HE staining and Sirius Red staining. In the cell experiment, human hepatic stellate cell line LX-2 was stimulated with TGF-β1 and treated with hydronidone or pirfenidone, and the expression levels of α-SMA, collagen type I and phosphorylated Smad3, phosphorylated p38, phosphorylated ERK1/2 and phosphorylated Akt were detected with Western blotting.
		                        		
		                        			RESULTS:
		                        			In the rat models of liver fibrosis, treatment with hydronidone obviously improved the liver functions, reduced the content of hydroxyproline in the liver tissue, and significantly alleviated liver fibrosis (P < 0.05). In LX-2 cells, hydronidone dose-dependently decreased the expression levels of α-SMA and collagen type I. In TGF- β1-stimulated cells, the phosphorylation levels of Smad3, P38, ERK, and Akt increased progressively with the extension of the treatment time, but this effect was significantly attenuated by treatment with hydronidone (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			Hydronidone can inhibit the phosphorylation of the proteins in the TGF-β signaling pathway, thereby preventing TGF-β1-mediated activation of hepatic stellate cells, which may be a possible mechanism by which hydronidone alleviates CCl4-induced liver fibrosis in rats.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Carbon Tetrachloride/metabolism*
		                        			;
		                        		
		                        			Collagen Type I
		                        			;
		                        		
		                        			Hepatic Stellate Cells/pathology*
		                        			;
		                        		
		                        			Hydroxyproline/therapeutic use*
		                        			;
		                        		
		                        			Liver Cirrhosis
		                        			;
		                        		
		                        			Phosphorylation
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Smad Proteins/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			
		                        		
		                        	
4.Preventive and therapeutic effects of safflower water extract on systemic scleroderma in mice and its mechanism.
Chun-Fang FAN ; Hong-Xia ZHANG ; Yi-Hao TANG ; Hai-Huan XU ; Dong SONG
Chinese Journal of Applied Physiology 2019;35(4):351-354
		                        		
		                        			OBJECTIVE:
		                        			To study the preventive and therapeutic effects of safflower water extract on systemic scleroderma (SSc) in mice and its mechanism.
		                        		
		                        			METHODS:
		                        			Sixty BALB/C mice were randomly divided into the control group, model group, prednisone group and safflower low, middle, high dose groups, 10 mice in each group.The control group was injected with normal saline, and the other five groups were subcutaneously injected with bleomycin hydrochloride with 100 μl at the concentration of 200 μg /ml on the back, once a day for 28 days to establish the SSc models.At the same time, the control group and model group were treated with normal saline (10 ml/kg), the prednisone group was treated with prednisone 4.5 mg/kg (10 ml/kg), and the low, middle, and high dose safflower groups were treated with safflower at the doses of 1.5, 3, 6 g/kg (10 ml/kg), and all groups were treated for 28 days.After 28 days, all mice were decapitated. The blood samples and back skin of the BLM injection part were collected.After that, all the tissue slices were taken to measure the dermal thickness, and the content of hydroxyproline (HYP) in the skin tissues was detected by hydrolysis method.The contents of tissue growth factor (CTGF) and transforming growth factor-β (TGF-β ) in the skin tissues and the levels of interleukin-6 (IL-6) and interleukin-17 (IL-17) in serum were determined by ELISA.
		                        		
		                        			RESULTS:
		                        			Compared with the control group, the dermal thickness of the model group was increased(P<0.05), the contents of CTGF, TGF-β and HYP in the skin tissues and the levels of IL-6 and IL-17 in the serum of the model group were increased(P<0.05); compared with the model group, the dermal thickness in the prednisone group and safflower groups was decreased (P<0.05), the levels of CTGF, TGF-β and HYP in the skin tissues and the serum levels of IL-6 and IL-17 in the prednisone group and safflower groups were decreased (P<0.05).
		                        		
		                        			CONCLUSION
		                        			Safflower water extract can improve skin condition (or dermal thickness) in SSc mice, and its mechanism may be related to reducing immune inflammatory response.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bleomycin
		                        			;
		                        		
		                        			Carthamus tinctorius
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Connective Tissue Growth Factor
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Hydroxyproline
		                        			;
		                        		
		                        			analysis
		                        			;
		                        		
		                        			Interleukin-17
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Scleroderma, Systemic
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Skin
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
5.Effects of Coriaria Sinica Maxim's extract on microcirculation and oxidative stress of wounds in rats with deep second-degree burn.
Ze-Hua HU ; Zhao-Fen YU ; Jin HUANG ; Xue-Fei CHEN ; De-Bin HUANG
Chinese Journal of Applied Physiology 2018;34(1):50-56
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of Coriaria Sinica Maxim's extract(CSME) on microcirculation and oxidative stress of wounds in rats with deep second-degree burn.
		                        		
		                        			METHODS:
		                        			One hundred and eighty rats were randomly divided into normal saline group(NS), white petroleum group(WPL), silver sulfadiazine group (SSD), Coriariasinica Maxim's extract group which were divided into low dose(CSME-L),middle dose(CSME-M) and high dose(CSME-H). After anesthesia with burn instrument to burn the hair removal area of rats, these wounds were confirmed by pathological results with deep second degree burns.And then,those drugs were applied respectively on the wounds,such as NS、WPL、SSD and different concentrations of CSME. After injury at 48 h, 7 d, 14 d and 21 d,the healing rate(HR) of wound was measured, and the microvessel density (MVD), tissue moisture (TM), vascular endothelial growth factor (VEGF), model driven architecture (MDA), superoxide dismutase(SOD) and hydroxyproline(HYP) were detected, too. All pathological sections of the wound tissue were observed.
		                        		
		                        			RESULTS:
		                        			The HR of CSME groups were obviously increased with a dose-dependent manner, which was significantly higher than that of NS and WPL (<0.05); On the 21 day, the diameter, number, distribution of the vessels and and the TM were less than other groups with a dose-dependent manner; On the 7 and 14 day after injury, CSME groups were significantly higher than the NS, WPL and SSD with a dose-dependent manner (<0.05), but, on the 21 day after injury, they were lower than NS, WPL and SSD with a dose-dependent (<0.05) manner. The levels of SOD, HYP, NO and ET in CSME groups were higher than those in other groups with dose-dependent on SOD activity, HYP, NO and ET content (<0.05), while MDA activity was weaker than other groups (<0.05). Similarly, pathological findings were also shown that CSME groups were better than other groups with a dose-dependent manner in decrease decreasing of wound repair time and hyperplasia of scar tissue.
		                        		
		                        			CONCLUSIONS
		                        			CSME can relieve tissue edema, promote wound contraction, speed up the formation of eschar and accelerate the proliferation of granulation tissue, which are beneficial to the wound healing in the early stages. But, it can inhibit the hyperplasia of granulation tissue to prevent the excessive scar hyperplasia of burn wound in the later stages. Its mechanism is related to regulation what microcirculation, oxidativestress, NO and VEGF.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Burns
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Hydroxyproline
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Malondialdehyde
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Microcirculation
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Superoxide Dismutase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Wound Healing
		                        			;
		                        		
		                        			drug effects
		                        			
		                        		
		                        	
6.Antifibrotic effect of total flavonoids of Astmgali Radix on dimethylnitrosamine-induced liver cirrhosis in rats.
Yang CHENG ; Jing-Yin MAI ; Mei-Feng WANG ; Gao-Feng CHEN ; Jian PING
Chinese journal of integrative medicine 2017;23(1):48-54
OBJECTIVETo study the effect of total flavonoids of Astmgali Radix (TFA) on liver cirrhosis induced with dimethylnitrosamine (DMN) in rats, and the effect on peroxisome proliferator-activated receptor γ (PPARγ), uncoupling protein 2 (UCP2) and farnesoid X receptor (FXR).
METHODSFifty-three Sprague-Dawley rats were randomly divided into a control group (10 rats) and a DMN group (43 rats). Rats in the DMN group were given DMN for 4 weeks and divided randomly into a model group (14 rats), a low-dosage TFA group (14 rats) and a high-dosage TFA group (15 rats) in the 3rd week. Rats were given TFA for 4 weeks at the dosage of 15 and 30 mg/kg in the low- and high-TFA groups, respectively. At the end of the experiment blood and liver samples were collected. Serum liver function and liver tissue hydroxyproline content were determined. hematoxylin-eosin (HE), Sirus red and immunohistochemical stainings of collagen I, smooth muscle actin (α-SMA) was conducted in paraffinembedded liver tissue slices. Real time polymerase chain reaction (PCR) was adopted to determine PPARγ, UCP2 and FXR mRNA levels. Western blot was adopted to determine protein levels of collagen I, α-SMA, PPARγ, UCP2 and FXR.
RESULTSCompared with the model group, TFA increased the ratio of liver/body weight (low-TFA group P<0.05, high-TFA group P<0.01), improved liver biochemical indices (P<0.01 for ALT, AST, GGT in both groups, P<0.05 for albumin and TBil in the high-TFA group) and reduced liver tissue hydroxproline content (P<0.01 in both groups) in treatment groups significantly. HE staining showed that TFA alleviated liver pathological changes markedly and Sirus red staining showed that TFA reduced collagen deposition, alleviated formation and extent of liver pseudolobule. Collagen I and α-SMA immunohistochemical staining showed that staining area and extent markedly decreased in TFA groups compared with the model group. TFA could increase PPARγ, it regulated target UCP2, and FXR levels significantly compared with the model group (in the low-TFA group all P<0.05, in the high group all P<0.01).
CONCLUSIONTFA could improve liver function, alleviate liver pathological changes, and reduce collagen deposition and formation of liver pseudolobule in rats with liver cirrhosis. The antifibrotic effect of TFA was through regulating PPARγ signal pathway and the interaction with FXR.
Actins ; metabolism ; Animals ; Blotting, Western ; Body Weight ; drug effects ; Collagen Type I ; metabolism ; Dimethylnitrosamine ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Flavonoids ; pharmacology ; therapeutic use ; Hydroxyproline ; metabolism ; Liver ; drug effects ; pathology ; Liver Cirrhosis ; blood ; drug therapy ; genetics ; pathology ; Male ; Organ Size ; drug effects ; PPAR gamma ; genetics ; metabolism ; Plant Extracts ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Real-Time Polymerase Chain Reaction ; Receptors, Cytoplasmic and Nuclear ; genetics ; metabolism ; Uncoupling Protein 2 ; genetics ; metabolism
7.Effects of Artesunate on hepatic fibrosis and its mechanism.
Yan DU ; Li-nan LI ; Bu-wu FANG
Chinese Journal of Applied Physiology 2015;31(1):14-17
OBJECTIVETo investigate the effects of Artesunate(Art) on the LX-2 cell.
METHODSThe cultured hepatic stellate cells were divided into control group and Art-treated groups with 250,350,450 µmol/L. The rate of cellular proliferation was detected by MIT assay, the content of ceramide (Cer)was determined by HPLC method, the content of hydroxyproline (Hyp) was determined by enzyme digestion method, the expressions of PPAR-γ, p53 and Caspase 3 were detected by Western blot.
RESULTSCompared with control group, IX-2 treated with Art were inhibited in a concentration-dependent manner(P < 0.01). Art could significantly increase the content of cerarnide in LX-2 ( P <0.01), and the content of Hyp was significantly decreased (P <0.05, P <0.01). The expressions of PPAR-γ, p53 and Caspase 3 were increased compared with that of control group(P < 0.01).
CONCLUSIONArtesunate could inhibit the proliferation and induce apoptosis of hepatic stellate cells through upregulating ceramide.
Apoptosis ; Artemisinins ; pharmacology ; Caspase 3 ; metabolism ; Cell Line ; Cell Proliferation ; Ceramides ; metabolism ; Hepatic Stellate Cells ; drug effects ; Humans ; Hydroxyproline ; metabolism ; Liver Cirrhosis ; PPAR gamma ; metabolism
8.Effect of edaravone on oxidative stress and myocardial fibrosis induced by isoproterenol in rats.
Shixiang WANG ; Zhifeng LU ; Wei XU ; Youquan CHEN ; Ximing CHEN
Journal of Southern Medical University 2015;35(11):1591-1596
OBJECTIVETo investigate the effect of edaravone on oxidative stress and myocardial fibrosis induced by isoproterenol in rats.
METHODSFifty male SD rats were randomly divided into 5 groups, including a control group, a myocardial fibrosis model (established by injections of isopropyl adrenaline for 10 days) group, and 3 edaravone groups with edaravone treatment at low, medium, or high doses for 14 days. After the treatments, the rats were examined for the degree of myocardial fibrosis, left ventricular mass index (LVMI), collagen volume fraction (CVF), and myocardial contents of collagen I (Col I), collage III (Col III), hydroxyproline (Hyp), superoxide dismutase (SOD), malondialdehyde (MDA), and nitric oxide (NO); The expression of transforming growth factor-β1 (TGF-β1) in the myocardial tissues was examined by immunofluorescence assay and Western blotting.
RESULTSCompared with the control rats, the rat models of myocardial fibrosis showed significantly increased CVF and LVMI (P=0.000), which were lowered by edaravone treatments in a dose-dependent manner (P<0.05). The myocardial contents of Col I, Col III and Hyp also increased in the model group (P=0.000) and were lowered dose-dependently by edaravone; the contents of MDA was higher (P=0.000) and SOD and NO were lower in the model group (P=0.000), and edaravone treatments obviously increased SOD and NO contents (P<0.05). The model rats showed significantly increased myocardial expression of TGF-β1 (P=0.000), which was markedly lowered by edaravone treatments (P=0.000). The myocardial content of MDA was positively correlated while SOD and NO were negatively with LVMI, CVF, Col I, Col III and Hyp; TGF-β1 was positively correlated with LVMI, CVF, Col I, Col III, Hyp and MDA but negatively with SOD and NO.
CONCLUSIONEdaravone can relieve oxidative stress and inhibit TGF-β1 activation to ameliorate myocardial fibrosis in rats.
Animals ; Antipyrine ; analogs & derivatives ; pharmacology ; Cardiomyopathies ; chemically induced ; drug therapy ; Collagen ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; Heart ; drug effects ; Hydroxyproline ; metabolism ; Isoproterenol ; Male ; Malondialdehyde ; metabolism ; Myocardium ; pathology ; Oxidative Stress ; Rats ; Rats, Sprague-Dawley ; Superoxide Dismutase ; metabolism ; Transforming Growth Factor beta1 ; metabolism
9.Study on the therapeutic effects of tetrandrine combined with N-acetylcysteine on experimental silicosis of rats.
Yun XIAO ; Hailing XIA ; Lijin ZHU ; Xianfeng LI ; Riping CHEN ; Xianhong YIN ; Zhaoqiang JIANG ; Lingfang FENG ; Junqiang CHEN ; Min YU ; Jianlin LOU ; Xing ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(7):519-522
OBJECTIVETo compare the effects of oral treatment with tetrandrine (TD) and N-acetylcys-teine (NAC) separately or jointly on silica-exposed rats.
METHODS40 sprague-Dawly (SD) rats were randomly divided into normal saline group, quartz group, TD treatment group (50 mg/kg), NAC treatment group (500 mg/kg) and combined treatment group (TD: 50 mg/kg + NAC: 500 mg/kg). Rats in normal saline group and other groups received intratracheal instillation of normal saline and quartz dust suspension respectively. Treatment groups were given TD, NAC separately or jointly via esophagus the next day after instillation, once a day and six times a week for 30 consecutive days. At the end of experiment, the pathological changes of lung tissues were evaluated by the methods of Foot, HE and Masson staining, the level of hydroxyproline (HYP), malondjalde-hyde (MDA), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lung tissues were measured by alkaline hydrolysis method, the barbituric acid method and enzyme-linked immunosorbent assay (ELISA) respectively.
RESULTSCompared with the quartz group, lymph nodes/body coefficients in all treatment groups and lung/body coefficient in combined treatment group were significantly decreased (P < 0.05). Pathology results showed that the normal saline group demonstrated no obvious evidence of lung damage. The quartz group lungs silicotic lesions focused on II~III level, the TD treatment group was mainly with I level, the NAC treatment group was mainly with I~II level, and the combined treatment group only showed little silicotic nodule, no obvious fibrosis. HYP content in TD treatment group and combined treatment group were significantly lower than that in the quartz group (P < 0.05), while it showed no obvious change in NAC treatment group. MDA content in lung tissues of each treatment group (TD treatment group, NAC treatment group and combined treatment group) were 18.80 ± 2.94, 20.13 ± 4.01 and 17.05 ± 3.52 nmol/ml respectively, which lower than in the quartz group (23.99 ± 3.26 nmol/ml). The level of IL-6 in lung tissues of the quartz group were 89.57 ± 8.78 pg/ml. After TD and NAC monotherapy, the IL-6 content decreased to 79.22 ± 9.65 pg/ml and 81.63 ± 5.72 pg/ml, and it decreased more significantly after combined medication (74.37 ± 3.17 pg/ml). The level of TNF-α in the quartz group were 59.05 ± 4.48 pg/ml. After TD and NAC monotherapy, the TNF-α content decreased to 50.48 ± 2.76 pg/ml and 54.28 ± 4.30 pg/ml, and it decreased more significantly after combined medication (49.10 ± 4.98 pg/ml).
CONCLUSIONNAC and TD could reduce MDA, TNF-α and IL-6 levels in lung tissue, and alleviate SiO2-induced pulmonary fibrosis in rats. Combined treatment with TD and NAC was more effective than TD or NAC treatment separately.
Acetylcysteine ; pharmacology ; Animals ; Benzylisoquinolines ; pharmacology ; Disease Models, Animal ; Dust ; Hydroxyproline ; metabolism ; Interleukin-6 ; metabolism ; Lung ; pathology ; Malondialdehyde ; metabolism ; Pulmonary Fibrosis ; chemically induced ; drug therapy ; Quartz ; toxicity ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Silicosis ; drug therapy ; Tumor Necrosis Factor-alpha ; metabolism
10.Reverse effect of Yinchenhao decoction in dimethyl nitrosamine-induced hepatic fibrosis in rats.
Yong-Hong WANG ; Chen-Xi ZHAO ; Ben-Mei CHEN ; Min HE ; Lin-Qi LIU ; Chun-Yan LI ; Xin CHEN
China Journal of Chinese Materia Medica 2014;39(8):1473-1478
OBJECTIVETo discuss the reverse effect of Yinchenhao decoction(YCHD) in dimethyl nitrosamine (DMN)-induced hepatic fibrosis in rats.
METHODThe rat hepatic fibrosis model was established through the intraperitoneal injection with 1% dimethyl nitrosamine (DMN) with a dose of 1.0 mL x kg(-1) x d(-1) for consecutively three weeks, once for the first three days of each. The rats were randomly divided into six groups: the silymarin positive control group (50.0 mg x kg(-1) x d(-1), YCHD high (20.0 g x kg(-1) d(-1)), middle (8.0 g x kg(-1) x d(-1)) and low (3.2 g x kg(-1) x d(-1)) dose groups, the model group and the normal control group. The model group and the normal control group were orally administered with normal saline for consecutively five weeks. The pathologic changes in liver tissues were observed by HE staining. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), g-glutamyltransferase (g-GGT), hyaluronic acid (HA), laminin (LN), collagen type IV (CIV) and type III procollagen amino terminal peptide (PIIINP) in serum were determined. The metabolite profiling of amino acid and the content of hydroxyproline in liver tissues were also measured.
RESULTCompared with the model group, YCHD high and middle dose groups could significantly reverse the pathologic changes in liver tissues of rats. YCHD could reduce the levels of ALT, AST, gamma-GGT, HA, LN, CIV, PIIINP in serum and the content of hydroxyproline in liver tissues in a dose-dependent manner, and altered the metabolite profiling of amino acid in rat liver tissues.
CONCLUSIONYCHD has the effect in reversing dimethyl nitrosamine induced hepatic fibrosis in rats.
Alanine Transaminase ; metabolism ; Animals ; Aspartate Aminotransferases ; metabolism ; Collagen Type IV ; metabolism ; Dimethylnitrosamine ; adverse effects ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Hydroxyproline ; metabolism ; Liver ; drug effects ; enzymology ; metabolism ; Liver Cirrhosis ; chemically induced ; drug therapy ; enzymology ; Male ; Rats ; Rats, Sprague-Dawley
            
Result Analysis
Print
Save
E-mail