1.Protective effect of simvastatin on impaired intestine tight junction protein ZO-1 in a mouse model of Parkinson's disease.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):880-884
Recently, several studies showed that gastrointestinal tract may be associated with pathophysiology of Parkinson's disease (PD). Intestine tight junction protein zonula occluden-1 (ZO-1) is an important component of intestinal barrier which can be degraded by matrix metallopeptidase 9 (MMP-9). In our previous study, a significant decline in ZO-1 was observed along with enhanced MMP-9 activity in the duodenum and distal colon of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice. In this study, the protective effect of simvastatin on ZO-1 was investigated using an MPTP mouse model of PD. Seven days after the end of MPTP application, the expression level of ZO-1 was evaluated by immunohistochemistry. The protein expression levels of ZO-1 and MMP9 were detected by Western blotting. Meanwhile, MMP-9 activity was analyzed by gelatin zymography. MPTP treatment led to a decrease in the expression of ZO-1, which was accompanied by elevated MMP-9 activity. Treatment with simvastatin could partly reverse the MPTP-induced changes in ZO-1 expression and reduce MMP-9 protein and activity. Taken together, these findings suggest that simvastatin administration may partially reverse the impairment of ZO-1 induced by MPTP via inhibiting the activity of MMP9, fortify the impaired intestinal barrier and limit gut-derived toxins that pass across the intestinal barrier.
Animals
;
Disease Models, Animal
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
pharmacology
;
Mice
;
Parkinson Disease
;
metabolism
;
Simvastatin
;
pharmacology
;
Zonula Occludens-1 Protein
;
drug effects
2.Effect of Atorvastatin on Expression of Peroxisome Proliferator-activated Receptor Beta/delta in Angiotensin II-induced Hypertrophic Myocardial Cells In Vitro.
Li SHENG ; Xu YANG ; Ping YE ; Yong-xue LIU ; Chun-guang HAN
Chinese Medical Sciences Journal 2015;30(4):245-251
OBJECTIVETo explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved.
METHODSAn in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensin II (Ang II) stimulation. Before Ang II stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations (0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, mRNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, mRNA and protein expressions of the δ/β peroxisome proliferator-activated receptor (PPAR) subtypes.
RESULTSIt was shown that atorvastatin could ameliorate Ang II-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented mRNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR- δ/β at both the mRNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment.
CONCLUSIONSAtorvastatin could improve Ang II-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.
Angiotensin II ; pharmacology ; Animals ; Atorvastatin Calcium ; pharmacology ; therapeutic use ; Cardiomegaly ; metabolism ; pathology ; prevention & control ; Cells, Cultured ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; PPAR delta ; genetics ; PPAR-beta ; genetics ; Rats ; Rats, Wistar
3.Effect of Ursolic Acid on Breast Cancer Resistance Protein-mediated Transport of Rosuvastatin In Vivo and Vitro.
Jin-hua WEN ; Xiao-hua WEI ; Xiang-yuan SHENG ; De-qing ZHOU ; Hong-wei PENG ; Yan-ni LU ; Jian ZHOU
Chinese Medical Sciences Journal 2015;30(4):218-225
OBJECTIVETo evaluate whether ursolic acid can inhibit breast cancer resistance protein (BCRP)-mediated transport of rosuvastatin in vivo and in vitro.
METHODSFirstly, we explored the pharmacokinetics of 5-fluorouracil (5-FU, a substrate of BCRP) in rats in the presence or absence of ursolic acid. Secondly, we studied the pharmacokinetics of rosuvastatin in rats in the presence or absence of ursolic acid or Ko143 (inhibitor of BCRP). Finially, the concentration-dependent transport of rosuvastatin and the inhibitory effects of ursolic acid and Ko143 were examined in Madin-Darby Canine Kidney (MDCK) 2-BCRP421CC (wild type) cells and MDCK2-BCRP421AA (mutant type) cells.
RESULTSAs a result, significant changes in pharmacokinetics parameters of 5-FU were observed in rats following pretreatment with ursolic acid. Both ursolic acid and Ko143 could significantly affect the pharmacokinetics of rosuvastatin. The rosuvastatin transport in the BCRP overexpressing system was increased in a concentration-dependent manner. However, there was no statistical difference in BCRP-mediated transport of rosuvastatin betweent the wild type cells and mutant cells. The same as Ko143, ursolic acid inhibited BCRP-mediated transport of rosuvastatin in vitro.
CONCLUSIONUrsolic acid appears to be a potent modulator of BCRP that affects the pharmacokinetic of rosuvastatin in vivo and inhibits the transport of rosuvastatin in vitro.
ATP Binding Cassette Transporter, Sub-Family G, Member 2 ; ATP-Binding Cassette Transporters ; physiology ; Adenosine ; analogs & derivatives ; pharmacology ; Animals ; Biological Transport ; drug effects ; Diketopiperazines ; Heterocyclic Compounds, 4 or More Rings ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacokinetics ; Rats ; Rats, Sprague-Dawley ; Rosuvastatin Calcium ; pharmacokinetics ; Triterpenes ; pharmacology
4.Statins enhance anti-tumor effect of suberoylanilide hydroxamic acid on human non-small cell lung carcinoma cells.
Gui-kai LIANG ; Zhang-ting YAO ; Jie-qiong ZHANG ; Xi CHEN ; Rui-yang LIU ; Hui-hui CHEN ; Hong-hai WU ; Lu JIN ; Ling DING
Journal of Zhejiang University. Medical sciences 2015;44(5):500-505
OBJECTIVETo evaluate the anti-tumor effect of the combination of suberoylanilide hydroxamic acid(SAHA) with statins(lovastatin or simvastatin) on non-small cell lung carcinoma(NSCLC) cells.
METHODSHuman NSCLC A549 cells were treated with SAHA in combination of lovastatin or simvastatin. The cell growth was analyzed by SRB method, and the apoptosis of A549 cells was assessed by flow cytometer. The expression of cleaved poly-ADP-ribose polymerase(cleaved-PARP) and p21 protein was analyzed by Western-blotting when A549 cells were challenged with 2.5μmol/L SAHA and 5μmol/L lovastatin.
RESULTSLovastatin and simvastatin synergized SAHA in the inhibition of A549 cells. SAHA induced apoptosis was also enhanced by lovastatin. Treatment with 2.5μmol/L SAHA significantly up-regulated the expression of p21 protein in 48 h, while the protein expression was reduced in combined treatment with 5μmol/L lovastatin.
CONCLUSIONStatins can synergize the anti-tumor effect of SAHA in human NSCLC cells through a p21-dependent way.
Antineoplastic Agents ; pharmacology ; Apoptosis ; Carcinoma, Non-Small-Cell Lung ; pathology ; Cell Line, Tumor ; drug effects ; Cell Proliferation ; Cyclin-Dependent Kinase Inhibitor p21 ; metabolism ; Humans ; Hydroxamic Acids ; pharmacology ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Poly(ADP-ribose) Polymerases ; metabolism
5.Effect of NF-κB on proliferation of rat pulmonary artery smooth muscle cells inhibited by simvastatin.
Zhong-Qiang LIU ; Xiao-Qin WANG ; Han-Min LIU
Chinese Journal of Contemporary Pediatrics 2015;17(2):185-189
OBJECTIVETo explore the effects of NF-κB on proliferation of rat pulmonary artery smooth muscle cells (PASMC) inhibited by simvastatin.
METHODSPASMC isolated from rats and cultured in vitro were randomly divided into four groups (n=6 each): control, platelet-derived growth factor (PDGF) treatment, PDGF+simvastatin treatment, and PDGF+simvastatin+parthenolide (NF-κB inhibitor) treatment. MTT colorimetric assay and flow cytometry were performed to detect cell proliferation and cell cycle distribution. Immunohistochemistry was performed to detect the expression of NF-κB protein. Real-Time PCR was performed to detect NF-κB mRNA expression.
RESULTSCompared with the control group, MTT values of PASMC at all time points, cell proportion at the S phase and G2+M phase, NF-κB protein and mRNA expression increased significantly in the PDGF group (P<0.05). With the intervention of simvastatin, the levels of above indexes decreased compared with the PDGF group (P<0.05). With the intervention of simvastatin and parthenolide, the levels of above indexes decreased more obviously, but were not significantly different from those in the simvastatin intervention group.
CONCLUSIONSSimvastatin can inhibit proliferation of PASMC and cell cycle process. NF-κB may play an important role in the inhibitory effect of simvastatin on the proliferation of PASMC.
Animals ; Cell Proliferation ; drug effects ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Male ; Muscle, Smooth, Vascular ; cytology ; Myocytes, Smooth Muscle ; physiology ; NF-kappa B ; analysis ; genetics ; physiology ; Pulmonary Artery ; cytology ; RNA, Messenger ; analysis ; Rats ; Rats, Sprague-Dawley ; Simvastatin ; pharmacology
6.Effects of High-dose Atorvastatin Pretreatment in Patients with ST-segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention: A Cardiac Magnetic Resonance Study.
Eun Kyoung KIM ; Joo Yong HAHN ; Young Bin SONG ; Sung A CHANG ; Jin Ho CHOI ; Seung Hyuk CHOI ; Sang Chol LEE ; Yeon Hyeon CHOE ; Sang Hoon LEE ; Hyeon Cheol GWON
Journal of Korean Medical Science 2015;30(4):435-441
It is uncertain that atorvastatin pretreatment can reduce myocardial damage in patients undergoing primary percutaneous coronary intervention (PCI) for ST-segment elevation myocardial infarction (STEMI). The aim of this study was to investigate the effects of atorvastatin pretreatment on infarct size measured by contrast-enhanced magnetic resonance imaging (CE-MRI) in STEMI patients. Patients undergoing primary PCI for STEMI within 12 hr after symptom onset were randomized to an atorvastatin group (n = 30, 80 mg before PCI and for 5 days after PCI) or a control group (n = 37, 10 mg daily after PCI). The primary end point was infarct size evaluated as the volume of delayed hyperenhancement by CE-MRI within 14 days after the index event. The median infarct size was 19% (IQR 11.1%-31.4%) in the atorvastatin group vs. 16.3% (7.2%-27.2%) in the control group (P = 0.27). The myocardial salvage index (37.1% [26.9%-58.7%] vs. 46.9% [39.9-52.4], P = 0.46) and area of microvascular obstruction (1.1% [0%-2.0%] vs. 0.7% [0%-1.8%], P = 0.37) did not differ significantly between the groups. Frequency of the hemorrhagic and transmural infarctions was not significantly different in the 2 groups. Pretreatment with a high-dose atorvastatin followed by further treatment for 5 days in STEMI patients undergoing primary PCI failed to reduce the extent of myocardial damage or improve myocardial salvage.
Adult
;
Aged
;
Atorvastatin Calcium/*pharmacology
;
Electrocardiography
;
Female
;
Humans
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/*pharmacology
;
Image Enhancement
;
*Magnetic Resonance Imaging
;
Male
;
Middle Aged
;
Myocardial Infarction/pathology/*therapy
;
Myocardium/*pathology
;
*Percutaneous Coronary Intervention
;
Prospective Studies
7.Inhibition of HMG-CoA reductase by MFS, a purified extract from the fermentation of marine fungus Fusarium solani FG319, and optimization of MFS production using response surface methodology.
Yu ZHOU ; Wen-Hui WU ; Qing-Bo ZHAO ; Xiao-Yu WANG ; Bin BAO
Chinese Journal of Natural Medicines (English Ed.) 2015;13(5):346-354
The present study was designed to isolate and characterize a purified extract from Fusarium solani FG319, termed MFS (Metabolite of Fusarium solani FG319) that showed anti-atherosclerosis activity by inhibiting 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Response surface methodology (RSM) was employed to achieve an improved yield from the fermentation medium. The inhibiting effect of the isolate, MFS, on HMG-CoA reductase was greater than that of the positive control, lovastatin. The average recovery of MFS and the relative standard deviation (RSD) ranged between 99.75% to 101.18%, and 0.31% to 0.74%, respectively. The RSDs intra- and inter-assay of the three samples ranged from 0.288% to 2.438%, and from 0.934% to 2.383%, respectively. From the RSM, the concentration of inducer, cultivation time, and culture temperatures had significant effects on the MFS production, with the effect of inducer concentration being more pronounced that other factors. In conclusion, the optimal conditions for the MFS production were achieved using RSM and that MFS could be explored as an anti-atherosclerosis agent based on its ability to inhibit HMG-CoA reductase.
Analysis of Variance
;
Biological Factors
;
isolation & purification
;
pharmacology
;
Chromatography, High Pressure Liquid
;
Fermentation
;
physiology
;
Fusarium
;
metabolism
;
Hydroxymethylglutaryl CoA Reductases
;
metabolism
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
isolation & purification
;
pharmacology
;
Lovastatin
;
pharmacology
;
Nucleic Acid Amplification Techniques
8.Stereological Comparison of the Effects of Pentoxifylline, Captopril, Simvastatin, and Tamoxifen on Kidney and Bladder Structure After Partial Urethral Obstruction in Rats.
Mehdi SHIRAZI ; Mohammad Reza SOLTANI ; Zahra JAHANABADI ; Mohammad Amin ABDOLLAHIFAR ; Nader TANIDEH ; Ali NOORAFSHAN
Korean Journal of Urology 2014;55(11):756-763
PURPOSE: Limited studies have shown antifibrotic effects of pentoxifylline, captopril, simvastatin, and tamoxifen. No comparisons are available of the effects of these drugs on prevention of renal and bladder changes in partial urethral obstruction (PUO). MATERIALS AND METHODS: The rats were divided into six groups (n=7). The sham-operated rats (group I) only underwent laparotomy and did not receive any treatments. The PUO groups (group II-VI) received normal saline (PUO+NS), pentoxifylline (100 mg/kg/d; PUO+PEN), captopril (35 mg/kg/d; PUO+CAP), simvastatin (15 mg/kg/d; PUO+SIM), or tamoxifen (10 mg/kg/d; PUO+TAM) by gavage for 28 days. Then, the volume and/or length of the kidney components (tubules, vessels, and fibrous tissue) and the bladder components (epithelial and muscular layers, fibrous tissue, fibroblast and fibrocyte number) were quantitatively evaluated on the microscopic sections by use of stereological techniques. RESULTS: The volume of renal and bladder fibrosis was significantly ameliorated in the PUO+PEN group, followed by the PUO+CAP, PUO+SIM, and PUO+TAM groups. Also, the volume and length of the renal tubules and vessels and bladder layers were more significantly protected in the PUO+PEN group, followed by the PUO+CAP, PUO+SIM, and PUO+TAM groups. CONCLUSIONS: Treatment of PUO with PEN was more effective in the prevention of renal and bladder fibrosis and in the preservation of renal and bladder structures.
Angiotensin-Converting Enzyme Inhibitors/pharmacology
;
Animals
;
Captopril/*pharmacology
;
Disease Models, Animal
;
Estrogen Antagonists/pharmacology
;
Free Radical Scavengers/pharmacology
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
;
Kidney/*drug effects/pathology
;
Male
;
Pentoxifylline/*pharmacology
;
Rats
;
Simvastatin/*pharmacology
;
Tamoxifen/*pharmacology
;
Urethral Obstruction/*drug therapy
;
Urinary Bladder Neck Obstruction/*drug therapy
9.Atorvastatin Attenuates TNF-alpha Production via Heme Oxygenase-1 Pathway in LPS-stimulated RAW264.7 Macrophages.
Xiao Qiao WANG ; Nian Sang LUO ; Zhong Qing Chen SALAH ; Yong Qing LIN ; Miao Ning GU ; Yang Xin CHEN ;
Biomedical and Environmental Sciences 2014;27(10):786-793
OBJECTIVETo assess the effect of atorvastatin on lipopolysaccharide (LPS)-induced TNF-α production in RAW264.7 macrophages.
METHODSRAW264.7 macrophages were treated in different LPS concentrations or at different time points with or without atorvastatin. TNF-α level in supernatant was measured. Expressions of TNF-α mRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HO activity was assayed.
RESULTSLPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1 activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase (MAPK) pathways participate in regulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin on TNF-α expression and production in LPS-stimulated macrophages.
CONCLUSIONAtorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways, suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.
Adjuvants, Immunologic ; pharmacology ; Animals ; Atorvastatin Calcium ; Enzyme Activation ; drug effects ; Heme Oxygenase-1 ; genetics ; metabolism ; Heptanoic Acids ; pharmacology ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; Lipopolysaccharides ; pharmacology ; Macrophages ; drug effects ; Membrane Proteins ; genetics ; metabolism ; Mice ; Pyrroles ; pharmacology ; Tumor Necrosis Factor-alpha ; metabolism
10.Study on lipid-lowering traditional Chinese medicines based on pharmacophore technology and patent retrieval.
Xiao-qian HUO ; Yu-su HE ; Lian-sheng QIAO ; Zhi-yi SUN ; Yan-ling ZHANG
China Journal of Chinese Materia Medica 2014;39(24):4839-4843
The combined application of statins that inhibit HMG-CoA reductase and fibrates that activate PPAR-α can produce a better lipid-lowering effect than the simple application, but with stronger adverse reactions at the same time. In the treatment of hyperlipidemia, the combined administration of TCMs and HMG-CoA reductase inhibitor in treating hyperlipidemia shows stable efficacy and less adverse reactions, and provides a new option for the combined application of drugs. In this article, the pharmacophore technology was used to search chemical components of TCMs, trace their source herbs, and determine the potential common TCMs that could activate PPAR-α. Because there is no hyperlipidemia-related medication reference in modern TCM classics, to ensure the high safety and efficacy of all selected TCMs, we selected TCMs that are proved to be combined with statins in the World Traditional/Natural Medicine Patent Database, analyzed corresponding drugs in pharmacophore results based on that, and finally obtained common TCMs that can be applied in PPAR-α and combined with statins. Specifically, the pharmacophore model was based on eight receptor-ligand complexes of PPAR-α. The Receptor-Ligand Pharmacophore Generation module in the DS program was used to build the model, optimize with the Screen Library module, and get the best sub-pharmacophore, which consisted of two hydrogen bond acceptor, three hydrophobic groups and 19 excluded volumes, with the identification effectiveness index value N of 2. 82 and the comprehensive evaluation index CAI value of 1. 84. The model was used to screen the TCMD database, hit 5,235 kinds of chemical components and 1 193 natural animals and plants, and finally determine 62 TCMs. Through patent retrieval, we found 38 TCMs; After comparing with the virtual screening results, we finally got seven TCMs.
Acyl Coenzyme A
;
metabolism
;
Animals
;
Databases, Factual
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
Hydrophobic and Hydrophilic Interactions
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors
;
chemistry
;
pharmacology
;
Lipid Metabolism
;
drug effects
;
Lipids
;
blood
;
Medicine, Chinese Traditional
;
Models, Molecular
;
Quantitative Structure-Activity Relationship
;
Technology

Result Analysis
Print
Save
E-mail