1.7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress.
Suk Ju CHO ; Kyoung Ah KANG ; Mei Jing PIAO ; Yea Seong RYU ; Pincha Devage Sameera Madushan FERNANDO ; Ao Xuan ZHEN ; Yu Jae HYUN ; Mee Jung AHN ; Hee Kyoung KANG ; Jin Won HYUN
Biomolecules & Therapeutics 2019;27(1):85-91
Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.
Antioxidants
;
Autonomic Pathways
;
Cardiovascular Diseases
;
Cell Death
;
Diabetes Complications
;
Diabetic Neuropathies
;
Glucose
;
Healthy Volunteers
;
Humans
;
Hydroxyl Radical
;
Lipid Peroxidation
;
Neurons*
;
Oxidative Stress*
;
Superoxides
2.Antioxidant and Anti-inflammatory Activity of Six Halophytes in Korea
Jeong Min LEE ; Mi Jin YIM ; Grace CHOI ; Myeong Seok LEE ; Yun Gyeong PARK ; Dae Sung LEE
Natural Product Sciences 2018;24(1):40-46
The aim of this study was to measure and compare polyphenol content, antioxidant, and anti-inflammatory activity of six halophytes (Limonium tetragonum, Suaeda glauca, Suaeda japonica, Salicornia europaea, Triglochin maritimum, and Sonchus brachyotus). Depending on the total polyphenol content, the plants were categorized into two groups: (1) a high total polyphenol content group that included L. tetragonum, S. brachyotus, and S. europaea, and, (2) a low total polyphenol content group consisting of S. glauca, T. maritima, and S. japonica. Antioxidant activity was evaluated using DPPH and hydroxyl radical scavenging assays, and by measuring ROS. Anti-inflammatory activity was evaluated by measuring NO and PGE₂. L. tetragonum and S. brachyotus, that have high polyphenol content, also showed strong antioxidant activity. In addition, L. tetragonum, S. brachyotus, and S. europaea showed good anti-inflammatory activity. Consequently, the total polyphenol content was thought to be related to antioxidant and anti-inflammatory activity. Therefore, S. brachyotus and L. tetragonum are good candidates for use in pharmaceuticals and functional foods.
Chenopodiaceae
;
Functional Food
;
Hydroxyl Radical
;
Korea
;
Salt-Tolerant Plants
;
Sonchus
3.Antioxidant activities of crude phlorotannins from Sargassum hemiphyllum.
Zhi-Li ZHAO ; Xiao-Qing YANG ; Zhong-Qing GONG ; Ming-Zhu PAN ; Ya-Li HAN ; Yi LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(3):449-455
Brown algae are well known as a source of biologically active compounds, especially those having antioxidant activities, such as phlorotannins. In this study we examined the antioxidant activities of crude phlorotannins extracts (CPEs) obtained from Sargassum hemiphyllum (SH) and fractionated according to the molecular weights. When CPEs were administrated at a dose of 30 mg/kg to Kunming mice pre-treated with carbon tetrachloride (CCl4), the levels of oxidative stress indicators in the liver, kidney and brain were significantly reduced in vivo. All the components of various molecular weight fractions of CPEs exhibited greater scavenging capacities in clearing hydroxyl free radical and superoxide anion than the positive controls gallic acid, vitamin C and vitamin E. Particularly, the components greater than 30 kD obtained from ethyl acetate phase showed the highest antioxidant capacities. These results indicated that SH is a potential source for extracting phlorotannins, the algal antioxidant compounds.
Animals
;
Antioxidants
;
isolation & purification
;
pharmacology
;
Ascorbic Acid
;
pharmacology
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Carbon Tetrachloride
;
antagonists & inhibitors
;
toxicity
;
Carbon Tetrachloride Poisoning
;
drug therapy
;
metabolism
;
pathology
;
Chemical Fractionation
;
methods
;
Gallic Acid
;
pharmacology
;
Hydroxyl Radical
;
antagonists & inhibitors
;
metabolism
;
Kidney
;
drug effects
;
metabolism
;
pathology
;
Liquid-Liquid Extraction
;
methods
;
Liver
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mice
;
Mice, Inbred Strains
;
Oxidation-Reduction
;
Oxidative Stress
;
drug effects
;
Phaeophyta
;
chemistry
;
Sargassum
;
chemistry
;
Superoxides
;
antagonists & inhibitors
;
metabolism
;
Tannins
;
isolation & purification
;
pharmacology
;
Vitamin E
;
pharmacology
4.Evaluation of Antioxidant, Anti-cholinesterase, and Anti-inflammatory Effects of Culinary Mushroom Pleurotus pulmonarius.
Trung Kien NGUYEN ; Kyung Hoan IM ; Jaehyuk CHOI ; Pyung Gyun SHIN ; Tae Soo LEE
Mycobiology 2016;44(4):291-301
Culinary mushroom Pleurotus pulmonarius has been popular in Asian countries. In this study, the anti-oxidant, cholinesterase, and inflammation inhibitory activities of methanol extract (ME) of fruiting bodies of P. pulmonarius were evaluted. The 1,1-diphenyl-2-picryl-hydrazy free radical scavenging activity of ME at 2.0 mg/mL was comparable to that of butylated hydroxytoluene, the standard reference. The ME exhibited significantly higher hydroxyl radical scavenging activity than butylated hydroxytoluene. ME showed slightly lower but moderate inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase than galantamine, a standard AChE inhibitor. It also exhibited protective effect against cytotoxicity to PC-12 cells induced by glutamate (10~100 µg/mL), inhibitory effect on nitric oxide (NO) production and inducible nitric oxide synthase protein expression in lipopolysaccharide-stimulated RAW 264.7 macrophages, and carrageenan-induced paw edema in a rat model. High-performance liquid chromatography analysis revealed the ME of P. pulmonarius contained at least 10 phenolic compounds and some of them were identified by the comparison with known standard phenolics. Taken together, our results demonstrate that fruiting bodies of P. pulmonarius possess antioxidant, anti-cholinesterase, and inflammation inhibitory activities.
Acetylcholinesterase
;
Agaricales*
;
Asian Continental Ancestry Group
;
Butylated Hydroxytoluene
;
Butyrylcholinesterase
;
Cholinesterases
;
Chromatography, Liquid
;
Edema
;
Fruit
;
Galantamine
;
Glutamic Acid
;
Humans
;
Hydroxyl Radical
;
Inflammation
;
Macrophages
;
Methanol
;
Models, Animal
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Phenol
;
Pleurotus*
5.Anti-oxidant and Hepatoprotective Effect of White Ginsengs in H2O2-Treated HepG2 Cells.
Shanmugam PARTHASARATHI ; Se Chul HONG ; Myeong Hwan OH ; Young Sik PARK ; Ji Hyun YOO ; Su Yeon SEOL ; Hwan LEE ; Jong Dae PARK ; Mi Kyung PYO
Natural Product Sciences 2015;21(3):210-218
The antioxidant activity of white ginseng was not recorded in Korea Functional Food Code, while its activity of red ginsengs was recorded. The aim of this study was to evaluate the antioxidant and hepato protective effect of different ginsengs in H2O2-treated HepG2 cells. White and red ginseng were prepared from longitudinal section of the same fresh ginseng (4-year old). The whole parts of white and red ginsengs were separately extracted with 70% ethanol and distilled water respectively, at 70 degrees C to obtain therapeutic ginseng extracts namely, WDH (distilled water extract of white ginseng), WEH (70% ethanol extract of white ginseng), RDH (distilled water extract of red ginseng) and REH (70% ethanol extract of red ginseng). In this work, we have investigated the DPPH, hydroxyl radical, Fe2+-chelating activity, intracellular ROS scavenging capacity and lipid peroxidation of different ginsengs. All these extracts showed a dose dependent free-radical scavenging capacity and a ROS generation as well as lipid peroxidation was significantly reduced by treatment with bioactive extracts of white ginsengs (WDH) than red ginsengs. Additionally, white ginseng extracts (WDH) has dramatically increased intracellular antioxidant enzyme activities like superoxide dismutase and catalase in H2O2-treated HepG2 cells. All these results explain that administration of white ginseng is useful as herbal medicine than red ginseng for chemoprevention of liver damage.
Catalase
;
Cell Survival
;
Chemoprevention
;
Ethanol
;
Functional Food
;
Hep G2 Cells*
;
Herbal Medicine
;
Hydroxyl Radical
;
Korea
;
Lipid Peroxidation
;
Liver
;
Panax*
;
Superoxide Dismutase
;
Water
6.In vitro free radical scavenging activity of ethanolic extract of the whole plant of Evolvulus alsinoides (L.) L.
Duraisamy GOMATHI ; Ganesan RAVIKUMAR ; Manokaran KALAISELVI ; Balasubramaniam VIDYA ; Chandrasekar UMA
Chinese journal of integrative medicine 2015;21(6):453-458
OBJECTIVETo identify the free radical scavenging activity of ethanolic extract of Evolvulus alsinoides.
METHODSThe free radical scavenging activity was evaluated by in vitro methods like reducing power assay, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) reduction, superoxide radical scavenging activity, 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS(+)) scavenging activity, hydroxyl radical scavenging assay, and nitric oxide radical scavenging assay, which were studied by using ascorbic acid as standard.
RESULTSThe extract showed significant activities in all antioxidant assays compared with the reference antioxidant ascorbic acid. The total antioxidant activity as well as the reducing power was also found to increase in a dose-dependent manner.
CONCLUSIONEvolvulus alsinoides may act as a chemopreventive agent, providing antioxidant properties and offering effective protection from free radicals.
Antioxidants ; chemistry ; Benzothiazoles ; chemistry ; Biphenyl Compounds ; chemistry ; Convolvulaceae ; chemistry ; Ethanol ; chemistry ; Free Radical Scavengers ; chemistry ; Hydroxyl Radical ; chemistry ; Nitric Oxide ; chemistry ; Oxidation-Reduction ; drug effects ; Picrates ; chemistry ; Plant Extracts ; chemistry ; Sulfonic Acids ; chemistry ; Superoxides ; chemistry
7.Antioxidative effects of Kimchi under different fermentation stage on radical-induced oxidative stress.
Boh Kyung KIM ; Ji Myung CHOI ; Soon Ah KANG ; Kun Young PARK ; Eun Ju CHO
Nutrition Research and Practice 2014;8(6):638-643
BACKGROUND/OBJECTIVES: Kimchi is a traditional Korean fermented vegetable containing several ingredients. We investigated the protective activity of methanol extract of kimchi under different fermentation stages against oxidative damage. MATERIALS/METHODS: Fresh kimchi (Fresh), optimally ripened kimchi (OptR), and over ripened kimchi (OvR) were fermented until the pH reached pH 5.6, pH 4.3, and pH 3.8, respectively. The radical scavenging activity and protective activity from oxidative stress of kimchi during fermentation were investigated under in vitro and cellular systems using LLC-PK1 cells. RESULTS: Kimchi exhibited strong radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl, nitric oxide, superoxide anion, and hydroxyl radical. In addition, the free radical generators led to loss of cell viability and elevated lipid peroxidation, while treatment with kimchi resulted in significantly increased cell viability and decreased lipid peroxidation. Furthermore, the protective effect against oxidative stress was related to regulation of cyclooxygenase-2, inducible nitric oxide synthase, nuclear factor-kappaB p65, and IkappaB expression. In particular, OvR showed the strongest protective effect from cellular oxidative stress among other kimchi. CONCLUSION: The current study indicated that kimchi, particularly OptR and OvR, played a protective role against free radical-induced oxidative stress. These findings suggest that kimchi is a promising functional food with an antioxidative effect and fermentation of kimchi led to elevation of antioxidative activity.
Animals
;
Cell Survival
;
Cyclooxygenase 2
;
Fermentation*
;
Functional Food
;
Hydrogen-Ion Concentration
;
Hydroxyl Radical
;
Lipid Peroxidation
;
LLC-PK1 Cells
;
Methanol
;
Nitric Oxide
;
Nitric Oxide Synthase Type II
;
Oxidative Stress*
;
Superoxides
;
Swine
;
Vegetables
8.Influence of Genista tinctoria L. or methylparaben on subchronic toxicity of bisphenol A in rats.
Daniela-Saveta POPA ; Pompei BOLFA ; Bela KISS ; Laurian VLASE ; Ramona PĂLTINEAN ; Anca POP ; Cornel CĂTOI ; Gianina CRIŞAN ; Felicia LOGHIN
Biomedical and Environmental Sciences 2014;27(2):85-96
OBJECTIVETo evaluate the influence of an extract of Genista tinctoria L. herba (GT) or methylparaben (MP) on histopathological changes and 2 biomarkers of oxidative stress in rats subchronicly exposed to bisphenol A (BPA).
METHODSAdult female Wistar rats were orally exposed for 90 d to BPA (50 mg/kg), BPA+GT (35 mg isoflavones/kg) or BPA+MP (250 mg/kg). Plasma and tissue samples were taken from liver, kidney, thyroid, uterus, ovary, and mammary gland after 30, 60, and 90 d of exposure respectively. Lipid peroxidation and in vivo hydroxyl radical production were evaluated by histological analysis along with malondialdehyde and 2,3-dihydroxybenzoic acid detection.
RESULTSThe severity of histopathological changes in liver and kidneys was lower after GT treatment than after BPA or BPA+MP treatment. A minimal thyroid receptor antagonist effect was only observed after BPA+MP treatment. The abnormal folliculogenesis increased in a time-dependent manner, and the number of corpus luteum decreased. No significant histological alterations were found in the uterus. The mammary gland displayed specific estrogen stimulation changes at all periods. Both MP and GT revealed antioxidant properties reducing lipid peroxidation and BPA-induced hydroxyl radical generation.
CONCLUSIONGT L. extract ameliorates the toxic effects of BPA and is proved to have antioxidant potential and antitoxic effect. MP has antioxidant properties, but has either no effect or exacerbates the BPA-induced histopathological changes.
Animals ; Benzhydryl Compounds ; toxicity ; Chemical and Drug Induced Liver Injury ; pathology ; prevention & control ; Endocrine Disruptors ; toxicity ; Female ; Genista ; Hydroxyl Radical ; blood ; Lipid Peroxidation ; drug effects ; Liver ; pathology ; Oxidative Stress ; drug effects ; Parabens ; toxicity ; Phenols ; toxicity ; Phytotherapy ; Plant Extracts ; pharmacology ; therapeutic use ; Rats ; Rats, Wistar
9.Antioxidant function of solanesol and its inhibitory effect on tyrosinase.
Qix BAI ; Jia YU ; Mei SU ; Rui BAI ; Goroh KATUMATA ; Masahiro KATUMATA ; Xiushen CHEN
Journal of Biomedical Engineering 2014;31(4):833-841
The present paper intends to discuss the antioxidant and tyrosinase inhibition effect of solanesol from three aspects of ultraviolet radiation and free radical scavenging. The paper makes a survey on diurnal variation rule of the minimum ultraviolet transmittance and ultraviolet transmittance of solanesol, hydroxyl (OH) free radical scavenging method of Smirnoff reaction system model, superoxide anion O2- free radical scavenging method of pyrogallol autoxidation, and the inhibitory effect of solanesol on tyrosinase activity by enzyme kinetic method. The experiment results showed that solanesol could effectively scavenge lipid radicals to block lipid peroxidation, and inhibit effects on tyrosinase. Solanesol is a natural extract which could be used to prevent senile atrophy of human skin and senile plaque.
Enzyme Inhibitors
;
chemistry
;
Free Radical Scavengers
;
chemistry
;
Humans
;
Hydroxyl Radical
;
chemistry
;
Lipid Peroxidation
;
Monophenol Monooxygenase
;
antagonists & inhibitors
;
Terpenes
;
chemistry
;
Ultraviolet Rays
10.Antioxidative effects of fermented sesame sauce against hydrogen peroxide-induced oxidative damage in LLC-PK1 porcine renal tubule cells.
Jia Le SONG ; Jung Ho CHOI ; Jae Hoon SEO ; Jeung Ha KIL ; Kun Young PARK
Nutrition Research and Practice 2014;8(2):138-145
BACKGROUND/OBJECTIVES: This study was performed to investigate the in vitro antioxidant and cytoprotective effects of fermented sesame sauce (FSeS) against hydrogen peroxide (H2O2)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS/METHODS: 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl radical (*OH), and H2O2 scavenging assay was used to evaluate the in vitro antioxidant activity of FSeS. To investigate the cytoprotective effect of FSeS against H2O2-induced oxidative damage in LLC-PK1 cells, the cellular levels of reactive oxygen species (ROS), lipid peroxidation, and endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-px) were measured. RESULTS: The ability of FSeS to scavenge DPPH, *OH and H2O2 was greater than that of FSS and AHSS. FSeS also significantly inhibited H2O2-induced (500 microM) oxidative damage in the LLC-PK1 cells compared to FSS and AHSS (P < 0.05). Following treatment with 100 microg/mL of FSeS and FSS to prevent H2O2-induced oxidation, cell viability increased from 56.7% (control) to 83.7% and 75.6%, respectively. However, AHSS was not able to reduce H2O2-induced cell damage (viability of the AHSS-treated cells was 54.6%). FSeS more effectively suppressed H2O2-induced ROS generation and lipid peroxidation compared to FSS and AHSS (P < 0.05). Compared to the other sauces, FSeS also significantly increased cellular CAT, SOD, and GSH-px activities and mRNA expression (P < 0.05). CONCULUSIONS: These results from the present study suggest that FSeS is an effective radical scavenger and protects against H2O2-induced oxidative damage in LLC-PK1 cells by reducing ROS levels, inhibiting lipid peroxidation, and stimulating antioxidant enzyme activity.
Animals
;
Catalase
;
Cats
;
Cell Survival
;
Glutathione Peroxidase
;
Hydrogen Peroxide
;
Hydrogen*
;
Hydroxyl Radical
;
Lipid Peroxidation
;
LLC-PK1 Cells
;
Oxidative Stress
;
Reactive Oxygen Species
;
RNA, Messenger
;
Sesamum*
;
Superoxide Dismutase
;
Swine

Result Analysis
Print
Save
E-mail