1.Investigation of an acute hydrogen sulfide mixture gas poisoning in a confined space.
Li Wen ZHAO ; Tian Zi JIAN ; Long Ke SHI ; Ya Qian LI ; Xiang Dong JIAN ; Ren Hua ZHANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(8):610-612
Hydrogen sulphide poisoning is an acute poisoning event that occurs frequently in summer. A case of acute hydrogen sulphide poisoning in a confined space in August 2018 was investigated and clinical data were analyzed. This is a typical case of acute hydrogen sulfide gas poisoning in a confined space. The main cause of the accident is the lack of occupational protection and illegal rescue. Among the 5 patients, 3 died, 1 patient had long-term sequelae of nervous system damage such as cortical blindness, and 1 patient was cured.
Accidents
;
Accidents, Occupational
;
Confined Spaces
;
Gas Poisoning
;
Humans
;
Hydrogen Sulfide
;
Poisoning
2.Role and mechanism of hydrogen sulfide in vascular calcification.
Jian-Shuai MA ; Jie CHEN ; Hui HUANG
Acta Physiologica Sinica 2022;74(6):903-912
Vascular calcification is a common pathological process in patients with diabetes, chronic kidney disease, and cardiovascular disease, manifested by the deposition of hydroxyapatite on the walls of blood vessels. Hydrogen sulfide is the third gas signal molecule found in mammals after nitric oxide and carbon monoxide, which has anti-inflammatory, antioxidant stress and other effects in the cardiovascular system. In recent years, it has been recognized that hydrogen sulfide has an anti-vascular calcification effect, and supplementation with hydrogen sulfide and its donors can alleviate vascular calcification. In this review, we discussed the various evidence of the protective effect of hydrogen sulfide on vascular calcification, and highlighted the hydrogen sulfide metabolism changes and the potential regulatory mechanisms of hydrogen sulfide on the pathophysiological changes in vascular calcification.
Animals
;
Humans
;
Hydrogen Sulfide/metabolism*
;
Cardiovascular Diseases
;
Carbon Monoxide
;
Antioxidants
;
Nitric Oxide
;
Mammals/metabolism*
3.Effects of exogenous hydrogen sulfide on pulmonary hypertension in rabbits with endotoxic shock.
Zan GUO ; Yi-Xian LIU ; Jie QI ; Xiao-Hui XIAN ; Xin-Li HUANG
Chinese Journal of Applied Physiology 2022;38(3):264-269
Objective: To investigate the effects of exogenous hydrogen sulfide (H2S) on pulmonary vascular reactivity induced by endotoxic shock (ES) in rabbits. Methods: In this experiment, the model of endotoxic shock (ES) was induced by injection of lipopolysaccharides (LPS) to New Zealand big eared white rabbit through jugular vein (8 mg/0.8 ml/kg), the intervention was performed by H2S donor(sodium hydrosulfide, NaHS) which was injected intraperitoneally (28 μmol/kg) 15 min in advance. New Zealand rabbits were randomly divided into 4 groups(n=8):control group, LPS group, LPS+NaHS group and NaHS group. The changes of mean arterial pressure (MAP) and mean pulmonary arterial pressure (MPAP) were detected. The tension of pulmonary artery ring (PARs) was detected byin vitro vascular ring technique. The ultrastructure of pulmonary artery wall and pulmonary artery endothelial cells were observed by light microscope and scanning electron microscope. Results: ①MAP was decreased while MPAP was increased in rabbits after LPS injection, and ES animal model was established successfully. Compared with LPS group, mPAP of rabbit in LPS+NaHS group was decreased significantly (all P<0.05). ②Compared with normal control group, pulmonary artery of rabbits in LPS group had an increased contractile response to phenylephrine (PE) and a decreased relaxation response to acetylcholine (ACh) (both P<0.01); Compared with LPS group, pulmonary artery of rabbits in LPS+NaHS group had a decreased contractile response to PE and an increased relaxation response to ACh (both P<0.05). ③Under light microscope, the structure of vascular endothelial cells was continuous in the normal control group, the elastic fibers were intact in the subcutaneous layer, and the smooth muscle layer was arranged neatly. LPS can shed some of the pulmonary artery endothelial cells, break the subcutaneous elastic fibers, and disorder the smooth muscle layer structure. Compared with LPS group, the injury of pulmonary artery wall in LPS+NaHS group was ameliorated. The morphology of pulmonary artery wall was normal in NaHS group. It is showed that some endothelial cells of pulmonary artery were missing in LPS group by Scanning electron microscopy. The morphology of pulmonary artery endothelial cells in LPS+NaHS group was similar to that in the control group: slightly widened intercellular space was observed, and no cell exfoliation was observed. Conclusion: These results suggest that exogenous H2S can protect pulmonary artery endothelial cells and regulate the reactivity changes of pulmonary artery during ES, which may be one of the mechanisms reducing PAH in ES rabbits.
Animals
;
Endothelial Cells
;
Hydrogen Sulfide/pharmacology*
;
Hypertension, Pulmonary
;
Lipopolysaccharides/adverse effects*
;
Pulmonary Artery
;
Rabbits
;
Shock, Septic
4.Dual modulating effects of hydrogen sulfide on gastrointestinal tract and efficacy-toxicity transformation of hydrogen sulfide-mediated drugs.
Jin-Gao YU ; Na LI ; Zheng WANG ; Yu-Jing HUI ; Yu HE ; Xiu-He FAN
China Journal of Chinese Materia Medica 2022;47(15):3986-3993
Hydrogen sulfide is one of the most important signal transduction molecules in the body. Its anabolism and catabolism in the gastrointestinal tract(GT) are extremely high, and its role in the physiological and pathological process of the GT is fairly complicated. The study reviewed recent literature on hydrogen sulfide and GT, and proposed that hydrogen sulfide exerted dual modulating effects in the GT; specifically, it promoted the functions of the GT at low concentrations while damaged the GT at high concentrations. Hydrogen sulfide donors or metabolic modifiers exerted their therapeutic effects by restoring the metabolic homeostasis of hydrogen sulfide, and extended their efficacy to other tissues through hydrogen sulfide related gut-axis. Additionally, drugs could deviate hydrogen sulfide metabolism from the normal state due to their instability of structure, local over exposure and/or excessive pharmacological effects, thus inducing toxic and side effects or transforming therapeutic effects into toxic and side effects. This study provided references for the deep research on physiological and pathological mechanisms of hydrogen sulfide and facilitated the development of hydrogen sulfide-related drugs and discovery of their toxicity and efficacy mechanism.
Gastrointestinal Tract
;
Hydrogen Sulfide/pharmacology*
;
Signal Transduction
5.Xuebijing Injection Ameliorates H
Ping GENG ; Bing-Yu LING ; Hong-Liang ZHANG ; Jia-Li XIONG ; Ying WANG ; Fen YU ; Ding-Yu TAN ; Ji-Yang XU ; Hui-Hui WANG
Chinese journal of integrative medicine 2022;28(2):116-123
OBJECTIVE:
To investigate the protective effects and underlying mechanisms of Xuebijing Injection (XBJ) on the lung endothelial barrier in hydrogen sulfide (H
METHODS:
Sprague-Dawley rats were exposed to H
RESULTS:
The morphological investigation showed that XBJ attenuated H
CONCLUSIONS
XBJ ameliorated H
Animals
;
Claudin-5
;
Drugs, Chinese Herbal
;
Endothelial Cells
;
Hydrogen Sulfide
;
Phosphatidylinositol 3-Kinases
;
Rats
;
Rats, Sprague-Dawley
;
Respiratory Distress Syndrome/drug therapy*
6.Prokaryotic expression, purification and functional identification of epidermal pattern factors in Arabidopsis thaliana.
Zhuping JIN ; Cheng LI ; Lei WANG ; Yanxi PEI
Chinese Journal of Biotechnology 2020;36(4):792-800
Stomatal density is important for crop yield. In this paper, we studied the epidermal pattern factors (EPFs) related to stomatal development. Prokaryotic expression vectors were constructed to obtain EPFs. Then the relationship between EPFs and hydrogen sulfide (H2S) was established. First, AtEPF1, AtEPF2 and AtEPFL9 were cloned and constructed to pET28a vectors. Then recombinant plasmids pET28a-AtEPF1, pET28a-AtEPF2 and pET28a-AtEPFL9 were digested and sequenced, showing successful construction. Finally, they were transformed into E. coli BL21(DE3) separately and induced to express by isopropyl β-D-galactoside (IPTG). The optimized expression conditions including IPTG concentration (0.5, 0.3 and 0.05 mmol/L), temperature (28 °C, 28 °C and 16 °C) and induction time (16 h, 16 h and 20 h) were obtained. The bands of purified proteins were about 18 kDa, 19 kDa and 14.5 kDa, respectively. In order to identify their function, the purified AtEPF2 and AtEPFL9 were presented to Arabidopsis thaliana seedlings. Interestingly, the H2S production rate decreased or increased compared with the control, showing significant differences. That is, EPFs affected the production of endogenous H2S in plants. These results provide a foundation for further study of the relationship between H2S and EPFs on stomatal development, but also a possible way to increase the yield or enhance the stress resistance.
Arabidopsis
;
genetics
;
metabolism
;
Arabidopsis Proteins
;
genetics
;
isolation & purification
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Vectors
;
genetics
;
Hydrogen Sulfide
;
metabolism
;
Plasmids
;
genetics
;
Seedlings
;
metabolism
7.Effect of L-cysteine on colonic motility and the underlying mechanism.
Xiao-Jing QUAN ; Bai-Cang ZOU ; Bin QIN ; Fei DAI ; He-Sheng LUO ; Jin-Hai WANG
Acta Physiologica Sinica 2020;72(3):299-307
The purpose of the present study is to investigate the effect of L-cysteine on colonic motility and the underlying mechanism. Immunohistochemical staining and Western blot were used to detect the localization of the HS-generating enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE). Organ bath system was used to observe the muscle contractile activities. Whole-cell patch-clamp technique was applied to record ionic channels currents in colonic smooth muscle cells. The results showed that both CBS and CSE were localized in mucosa, longitudinal and circular muscle and enteric neurons. L-cysteine had a dual effect on colonic contraction, and the excitatory effect was blocked by pretreatment with CBS inhibitor aminooxyacetate acid (AOAA) and CSE inhibitor propargylglycine (PAG); L-cysteine concentration-dependently inhibited L-type calcium channel current (I) without changing the characteristic of L-type calcium channel (P < 0.01); In contrast, the exogenous HS donor NaHS increased I at concentration of 100 μmol/L, but inhibited I and modified the channel characteristics at concentration of 300 μmol/L (P < 0.05); Furthermore, L-cysteine had no effect on large conductance calcium channel current (I), but NaHS significantly inhibited I (P < 0.05). These results suggest that L-cysteine has a potential dual effect on colonic smooth muscle and the inhibitory effect might be directly mediated by L-type calcium channel while the excitatory effect might be mediated by endogenous HS.
Cystathionine beta-Synthase
;
Cystathionine gamma-Lyase
;
Cysteine
;
pharmacology
;
Hydrogen Sulfide
;
Muscle, Smooth
8.Effects of Hydrogen Sulfide on Inflammatory Factors and Mitochondrial Energy Metabolic Disorders After Reperfusion Injury in Rats.
Yong Hua YANG ; Wei WANG ; Bin HU ; Hai Long YANG ; Xi Chun WANG
Acta Academiae Medicinae Sinicae 2019;41(2):234-241
Objective To explore the effect of hydrogen sulfide on inflammatory factors and energy metabolism of mitochondria after limbs reperfusion injury in rats. Methods Sixty rats were divided into three groups:sham operation group,control group(ischemia-reperfusion injury + saline group),and experimental group(ischemia-reperfusion injury + HS group).Wistar rat models of limb ischemia-reperfusion injury were established.Skeletal muscle samples were collected to determine the levels of necrosis decomposition products [including myoglobin(MB),lipoprotein complex(LPC)and lipid peroxide(LPO)];blood samples were collected to determine the levels of interleukin(IL)-1,IL-6 and tumor necrosis factor-α(TNF-α);mitochondria were extracted for mitochondrial transmembrane potential measurement and ATP content detection.Statistical analysis was made on the test results. Results After ischemia reperfusion injury,the levels of MB,LPO,and LPC in skeletal muscle,liver,lung and renal tissues of the control group were significantly increased(MB:P =0.003,P =0.001,P =0.001,P =0.001;LPO:P =0.001,P =0.001,P =0.001,P =0.002;LPC:P =0.000,P =0.002,P =0.002,P =0.003),and hydrogen sulfide treatment during ischemia reperfusion significantly inhibited the production of MB,LPO,and LPC(MB:P =0.021,P =0.036,P =0.005;LPO:P =0.003,P =0.008,P =0.010,P =0.015;LPC:P =0.002,P =0.026,P =0.007,P =0.006).Ischemia/reperfusion of lower extremity in rats resulted in increased levels of IL-1,IL-6,and TNF-α in the serum of rats,and the levels of IL-1,IL-6,and TNF-increased over time,with statistically significant differences in IL-1,IL-6,and TNF-α among groups at 3 h(IL-1:P =0.019,P =0.011,P =0.009,$P_{12_{h}}$=0.008,and P =0.002;IL-6:P =0.026,P =0.009,P =0.002, $P_{12_{h}}$=0.002,P =0.003;TNF-α:P =0.002,P =0.002,P =0.005,$P_{12_{h}}$=0.002,P =0.003).The levels of IL-1,IL-6,and TNF-α in serum were significantly inhibited during ischemia reperfusion(IL-1:P =0.035,P =0.039,P =0.012,$P_{12_{h}}$=0.005,P =0.006;IL-6:P =0.042,P =0.025,P =0.023,$P_{12_{h}}$=0.006,P =0.005;TNF-α:P =0.005,P =0.003,P =0.022,$P_{12_{h}}$=0.005,P =0.005),and such inhibitory effects became even more obvious over time.After limb ischemia and reperfusion in the control group,the mitochondrial transmembrane potential of skeletal muscle cells significantly decreased compared with that of the sham group(t=6.698;P=0.001).After hydrogen sulfide treatment,the mitochondrial membrane potential energy of the experimental group was significantly higher than that of the control group(t=7.507,P = 0.000).The ATP level in the mitochondria of ischemia reperfusion rats in the control group was significantly lower than that in the sham group(t=7.526,P = 0.000).The content of mitochondrial ATP in the experimental group was significantly higher than that in the control group after hydrogen sulfide treatment(t=8.604,P = 0.000). Conclusions Hydrogen sulfide can alleviate the injury of skeletal muscle and distal organs after limb ischemia-reperfusion and reduce local inflammatory reaction.In addition,it is valuable in alleviating mitochondrial transmembrane potential and energy metabolism disorders during reperfusion injury.
Animals
;
Energy Metabolism
;
Hydrogen Sulfide
;
pharmacology
;
Inflammation
;
metabolism
;
Interleukin-6
;
metabolism
;
Mitochondrial Diseases
;
pathology
;
Rats
;
Rats, Wistar
;
Reperfusion Injury
;
Tumor Necrosis Factor-alpha
;
metabolism
9.The interventional effects of saturated hydrogen saline on lung injury in rats with cecal ligation and puncture operation.
Yu ZHAI ; Xiao Hong ZHOU ; Hui LIU ; Hong Yi FU ; Ya Min FAN ; Xin Li HUANG
Chinese Journal of Applied Physiology 2019;35(2):107-112
OBJECTIVE:
To investigate the hypothesis that hydrogen could ameliorate cecal ligation and puncture (CLP)-induced lung injury of rats by inhibiting cystathionine-gamma-lyase/hydrogen sulfide (CSE/HS) system.
METHODS:
A total number of 24 healthy male SD rats weighting 250~300 g were randomly divided into four groups (n=6 in each group): sham operation group(sham group), hydrogen-rich saline control group(H group), CLP group and hydrogen-rich saline treatment group(CLP+H group). The rats were treated with hydrogen-rich saline or saline 10 min before CLP or sham operation. At 8 h of sham or CLP operation, lung samples were obtained to detect the changes of the CSE/HS system using biochemical and RT-PCR methods. In order to further confirm the role of HS during hydrogen improve the lung injury of CLP rats, we also observed the effect of hydrogen-rich saline on the lung injury induced by HS donor-sodium sodium hydrosulfide (NaHS). Thirty-two healthy male SD rats (250~300 g) were randomly divided into four groups (n=8 in each group): control group, HS group, HS+H group and H group. Saline(10 mg/kg) or NaHS(HS donor, 56 μmol/kg) was injected intraperitoneally (10 mg/kg) respectively into rats in the control rats or HS group. For rats in the HS+H and H group, hydrogen-rich saline (10 mg/kg) was injected 10 min before saline or NaHS administration. Eight hours after the LPS saline or NaHS administration, lung coefficient, MDA content, and MPO activity were detected. The contents of TNF-α, IL-6 and IL-10 in lung tissue were measured, and the morphological changes of lung tissue were also observed.
RESULTS:
CSE/HS system up-regulating were observed in animals exposed to CLP. Hydrogen-rich saline treatment significantly inhibited CSE/HS system as indicated by significantly reduced HS production in lung, along with a decreased CSE activity and CSE mRNA expression (all P<0.05). Importantly, the results showed that lung injury and lung tissue inflammation were observed in animals exposed to NaHS. Hydrogen-rich saline treatment significantly attenuated lung injury as indicated by significantly improved histological changes in lung, significantly reduced index of quantitative assessment (IQA), MDA content and lung coefficient (all P<0.05). MPO activity in lung tissue was significantly reduced along with decreased productions of TNF-α and IL-6, and an increased production of IL-10 in the presence of hydrogen (all P<0.05), demonstrating antioxidant and anti-inflammatory effect of hydrogen in NaHS-induced ALI.
CONCLUSION
These results indicate that hydrogen-rich saline peritoneal injection improves the lung injury induced by CLP operation. The therapeutic effects of hydrogen-rich saline may be related to suppressing the production of HS.
Animals
;
Cecum
;
surgery
;
Cystathionine gamma-Lyase
;
metabolism
;
Cytokines
;
metabolism
;
Hydrogen
;
pharmacology
;
Hydrogen Sulfide
;
metabolism
;
Ligation
;
Lung Injury
;
therapy
;
Male
;
Punctures
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Saline Solution
;
pharmacology
10.Hepatoprotective effect of sodium hydrosulfide on hepatic encephalopathy in rats
Kyoung Wan KWON ; Yoonjin NAM ; Won Seok CHOI ; Tae Wook KIM ; Geon Min KIM ; Uy Dong SOHN
The Korean Journal of Physiology and Pharmacology 2019;23(4):263-270
Hydrogen sulfide is well-known to exhibit anti-inflammatory and cytoprotective activities, and also has protective effects in the liver. This study aimed to examine the protective effect of hydrogen sulfide in rats with hepatic encephalopathy, which was induced by mild bile duct ligation. In this rat model, bile ducts were mildly ligated for 26 days. Rats were treated for the final 5 days with sodium hydrosulfide (NaHS). NaHS (25 µmol/kg), 0.5% sodium carboxymethyl cellulose, or silymarin (100 mg/kg) was administered intraperitoneally once per day for 5 consecutive days. Mild bile duct ligation caused hepatotoxicity and inflammation in rats. Intraperitoneal NaHS administration reduced levels of aspartate aminotransferase and alanine aminotransferase, which are indicators of liver disease, compared to levels in the control mild bile duct ligation group. Levels of ammonia, a major causative factor of hepatic encephalopathy, were also significantly decreased. Malondialdehyde, myeloperoxidase, catalase, and tumor necrosis factor-α levels were measured to confirm antioxidative and anti-inflammatory effects. N-Methyl-D-aspartic acid (NMDA) receptors with neurotoxic activity were assessed for subunit NMDA receptor subtype 2B. Based on these data, NaHS is suggested to exhibit hepatoprotective effects and guard against neurotoxicity through antioxidant and anti-inflammatory actions.
Alanine Transaminase
;
Ammonia
;
Animals
;
Aspartate Aminotransferases
;
Bile Ducts
;
Carboxymethylcellulose Sodium
;
Catalase
;
Hepatic Encephalopathy
;
Hydrogen Sulfide
;
Inflammation
;
Ligation
;
Liver
;
Liver Diseases
;
Malondialdehyde
;
Models, Animal
;
N-Methylaspartate
;
Necrosis
;
Peroxidase
;
Rats
;
Silymarin
;
Sodium

Result Analysis
Print
Save
E-mail