1.A new method for isolating gas vesicles from Microcystis for ultrasound contrast.
Rui XU ; Huan LONG ; Yinghui WANG ; Kaiyao HUANG
Chinese Journal of Biotechnology 2022;38(4):1589-1601
Gas vesicles are a unique class of gas-filled protein nanostructures which are commonly found in cyanobacteria and Halobacterium. The gas vesicles may scatter sound waves and generate harmonic signals, which enabled them to have the potential to become a novel ultrasound contrast agent. However, the current hypertonic cracking method for isolating gas vesicles contains tedious operational procedures and is of low yield, thus not suitable for large-scale application. To overcome these technical challenges, we developed a rapid and efficient method for isolating gas vesicles from Microcystis. The new H2O2-based method increased the yield by three times and shortened the operation time from 24 hours to 7 hours. The H2O2 method is not only suitable for isolation of gas vesicles from laboratory-cultured Microcystis, but also suitable for colonial Microcystis covered with gelatinous sheath. The gas vesicles isolated by H2O2 method showed good performance in ultrasound contrast imaging. In conclusion, this new method shows great potential for large-scale application due to its high efficiency and wide adaptability, and provides technical support for developing gas vesicles into a biosynthetic ultrasonic contrast agent.
Contrast Media
;
Cyanobacteria
;
Hydrogen Peroxide
;
Microcystis
;
Proteins/chemistry*
2.Preparation and catalytic properties of catalase-inorganic hybrid nanoflowers.
Jiao PANG ; Mengtong JIANG ; Yuxin LIU ; Mingyu LI ; Jiaming SUN ; Conggang WANG ; Xianzhen LI
Chinese Journal of Biotechnology 2022;38(12):4705-4718
Catalase is widely used in the food, medical, and textile industries. It possesses exceptional properties including high catalytic efficiency, high specificity, and environmental friendliness. Free catalase cannot be recycled and reused in industry, resulting in a costly industrial biotransformation process if catalase is used as a core ingredient. Developing a simple, mild, cost-effective, and environmentally friendly approach to immobilize catalase is anticipated to improve its utilization efficiency and enzymatic performance. In this study, the catalase KatA derived from Bacillus subtilis 168 was expressed in Escherichia coli. Following separation and purification, the purified enzyme was prepared as an immobilized enzyme in the form of enzyme-inorganic hybrid nanoflowers, and the enzymatic properties were investigated. The results indicated that the purified KatA was obtained through a three-step procedure that included ethanol precipitation, DEAE anion exchange chromatography, and hydrophobic chromatography. Then, by optimizing the process parameters, a novel KatA/Ca3(PO4)2 hybrid nanoflower was developed. The optimum reaction temperature of the free KatA was determined to be 35 ℃, the optimum reaction temperature of KatA/Ca3(PO4)2 hybrid nanoflowers was 30-35 ℃, and the optimum reaction pH of both was 11.0. The free KatA and KatA/Ca3(PO4)2 hybrid nanoflowers exhibited excellent stability at pH 4.0-11.0 and 25-50 ℃. The KatA/Ca3(PO4)2 hybrid nanoflowers demonstrated increased storage stability than that of the free KatA, maintaining 82% of the original enzymatic activity after 14 d of storage at 4 ℃, whereas the free KatA has only 50% of the original enzymatic activity. In addition, after 5 catalytic reactions, the nanoflower still maintained 55% of its initial enzymatic activity, indicating that it has good operational stability. The Km of the free KatA to the substrate hydrogen peroxide was (8.80±0.42) mmol/L, and the kcat/Km was (13 151.53± 299.19) L/(mmol·s). The Km of the KatA/Ca3(PO4)2 hybrid nanoflowers was (32.75±2.96) mmol/L, and the kcat/Km was (4 550.67±107.51) L/(mmol·s). Compared to the free KatA, the affinity of KatA/Ca3(PO4)2 hybrid nanoflowers to the substrate hydrogen peroxide was decreased, and the catalytic efficiency was also decreased. In summary, this study developed KatA/Ca3(PO4)2 hybrid nanoflowers using Ca2+ as a self-assembly inducer, which enhanced the enzymatic properties and will facilitate the environmentally friendly preparation and widespread application of immobilized catalase.
Catalase
;
Nanostructures/chemistry*
;
Hydrogen Peroxide/metabolism*
;
Enzymes, Immobilized/chemistry*
;
Catalysis
3.Diverse sesquiterpenoids from Litsea lancilimba Merr. with potential neuroprotective effects against H2O2-induced SH-SY5Y cell injury.
Yi-Jie ZHANG ; Ming BAI ; Jia-Yi LI ; Shu-Yan QIN ; Yu-Yang LIU ; Xiao-Xiao HUANG ; Jiang ZHENG ; Shao-Jiang SONG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(9):701-711
Five undescribed sesquiterpenoids (1-5), and nine known sesquiterpenoids (6-14) were obtained from the fruits of Litsea lancilimba Merr. by LC-MS/MS molecular networking strategies. Litsemene A (1) possessed a unique 8-member ring through unexpected cyclization of the methyl group on C-10 of guaiane. Their structures were elucidated by spectroscopic techniques including IR, UV, NMR, HR-ESI-MS, and their absolute configurations were assigned by ECD calculations. All isolated sesquiterpenoids were analyzed by bioinformatics and evaluated for their neuroprotective effects against H2O2-induced injury in human neuroblastoma SH-SY5Y cells.
Chromatography, Liquid
;
Humans
;
Hydrogen Peroxide/toxicity*
;
Litsea
;
Molecular Structure
;
Neuroblastoma/drug therapy*
;
Neuroprotective Agents/pharmacology*
;
Sesquiterpenes/chemistry*
;
Tandem Mass Spectrometry
4.Mechanism of extract of Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma and Chuanxiong Rhizoma on SIRT1 autophagy pathway of endothelial cell senescence induced by hydrogen peroxide.
Cheng-Kui XIU ; Ying-Kun FU ; Qiang WANG ; Xue WANG ; Yan-Hong HU ; Ye WU ; Jing YANG ; Yan LEI
China Journal of Chinese Materia Medica 2021;46(23):6216-6223
This study aims to explore the effect of extract of Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Chuanxiong Rhizoma(hereinafter referred to as GNS) on the SIRT1-autophagy pathway of endothelial cell senescence induced by hydrogen peroxide(H_2O_2). To be specific, vascular endothelial cells were classified into the blank control group(control), model group(model), model + DMSO group(DMSO), resveratrol group(RESV), and GNS low-dose(GNS-L), medium-dose(GNS-M), and high-dose(GNS-H) groups. They were treated with H_2O_2 for senescence induction except the control. After intervention of cells in each group with corresponding drugs for 24 h, cell growth status was observed under an inverted microscope, and the formation of autophagosome under the transmission electron microscope. In addition, the changes of microtubule-associated protein 1 light chain 3β(LC3 B) were detected by immunofluorescence staining. The autophagy flux was tracked with the autophagy double-labeled adenovirus(mRFP-GFP-LC3) fusion protein. Dansylcadaverine(MDC) staining was employed to determine the autophagic vesicles, and Western blot the expression of sirtuin 1(SIRT1), ubiquitin-binding protein p62, and LC3Ⅱ. After H_2O_2 induction, cells demonstrated slow growth, decreased adhesion ability, raised number of SA-β-gal-stained blue ones, a certain number of autophagosomes with bilayer membrane and secondary lysosomes in the cytoplasm, and slight rise of autophagy flux level. Compared with the model group, GNS groups showed improved morphology, moderate adhesion ability, complete and smooth membrane, decreased SA-β-gal-stained blue cells, many autophagosomes, autophagic vesicles, and secondary lysosomes in the cytoplasm, increased autophagolysosomes, autophagy flux level, and fluorescence intensity of LC3 B and MDC, up-regulated expression of SIRT1 and LC3Ⅱ, and down-regulated expression of p62, suggesting the improvement of autophagy level. GNS can delay the senescence of vascular endothelial cells. After the intervention, the autophagy flux and related proteins SIRT1, LC3Ⅱand p62 changed significantly, and the autophagy level increased significantly. However, EX527 weakened the effect of Chinese medicine in delaying vascular senescence. GNS may delay the senescence of vascular endothelial cells through the SIRT1 autophagy pathway.
Autophagy
;
Cells, Cultured
;
Cellular Senescence
;
Drugs, Chinese Herbal/pharmacology*
;
Endothelial Cells/drug effects*
;
Hydrogen Peroxide
;
Panax/chemistry*
;
Sirtuin 1/genetics*
5.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
6.Evaluation of scavenging activity of hydrogen peroxide in different origins of Liropes Radix by HPLC-UV-CL system.
Fei-Leng CHEN ; Zheng-Fang HU ; Jin QI
China Journal of Chinese Materia Medica 2019;44(5):990-995
The hydrogen peroxide generation system was used to analyze the scavenging activity of hydrogen peroxide by Liropes Radix from different origins by HPLC-UV-CL. The UV-CL fingerprints of Liropes Radix from different origins were evaluated,and the HPLC-UV and LC-CL fingerprints were systematically analyzed and evaluated. The results showed that the ether fractions of Liriope spicata var. prolifera and L. muscari had good scavenging activity of hydrogen peroxide,and the total activity of different origins varied greatly,while the similar samples had similar activities. The total antioxidant activity of L. muscari is higher than that of L. spicata var.prolifera. The similarity analysis of the two fingerprints was carried out by two different analytical methods. The chemical fingerprints and the active fingerprints have different characteristics. The contribution of each fingerprint to the total peak area and total activity is also different. There are significant differences between the two different fingerprint clustering results.
Chromatography, High Pressure Liquid
;
Drugs, Chinese Herbal
;
Free Radical Scavengers
;
chemistry
;
Hydrogen Peroxide
;
isolation & purification
;
Liriope Plant
;
chemistry
;
Phytochemicals
;
chemistry
;
Plant Extracts
;
chemistry
;
Plant Roots
;
chemistry
7.Mitochondrial superoxide anions induced by exogenous oxidative stress determine tumor cell fate: an individual cell-based study.
Hui PAN ; Bao-Hui WANG ; Zhou-Bin LI ; Xing-Guo GONG ; Yong QIN ; Yan JIANG ; Wei-Li HAN
Journal of Zhejiang University. Science. B 2019;20(4):310-321
OBJECTIVE:
Reactive oxygen species (ROS) are involved in a variety of biological phenomena and serve both deleterious and beneficial roles. ROS quantification and assessment of reaction networks are desirable but difficult because of their short half-life and high reactivity. Here, we describe a pro-oxidative model in a single human lung carcinoma SPC-A-1 cell that was created by application of extracellular H2O2 stimuli.
METHODS:
Modified microfluidics and imaging techniques were used to determine O2 •- levels and construct an O2 •- reaction network. To elucidate the consequences of increased O2 •- input, the mitochondria were given a central role in the oxidative stress mode, by manipulating mitochondria-interrelated cytosolic Ca2+ levels, mitochondrial Ca2+ uptake, auto-amplification of intracellular ROS and the intrinsic apoptotic pathway.
RESULTS AND CONCLUSIONS
Results from a modified microchip demonstrated that 1 mmol/L H2O2 induced a rapid increase in cellular O2 •- levels (>27 vs. >406 amol in 20 min), leading to increased cellular oxidizing power (evaluated by ROS levels) and decreased reducing power (evaluated by glutathione (GSH) levels). In addition, we examined the dynamics of cytosolic Ca2+ and mitochondrial Ca2+ by confocal laser scanning microscopy and confirmed that Ca2+ stores in the endoplasmic reticulum were the primary source of H2O2-induced cytosolic Ca2+ bursts. It is clear that mitochondria have pivotal roles in determining how exogenous oxidative stress affects cell fate. The stress response involves the transfer of Ca2+ signals between organelles, ROS auto-amplification, mitochondrial dysfunction, and a caspase-dependent apoptotic pathway.
Apoptosis
;
Calcium/metabolism*
;
Calcium Signaling
;
Caspases/metabolism*
;
Cell Line, Tumor
;
Cell Lineage
;
Cytosol/metabolism*
;
Glutathione/metabolism*
;
Humans
;
Hydrogen Peroxide/chemistry*
;
Mitochondria/metabolism*
;
Oxidation-Reduction
;
Oxidative Stress
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Superoxides/chemistry*
8.Exogenous H₂O₂ regulated secondary metabolism of Scutellaria baicalensis and enhanced drug quality.
Xiao-Ying FU ; Hui-Min GUO ; Wei CONG ; Xiang-Cai MENG
China Journal of Chinese Materia Medica 2018;43(2):271-287
The increasing demand of Chinese materia medica could not be supplied by wild resource, and the cultivated medicinal materials become popular, which led to decreased quality of many medicinal materials due to the difference of the circumstance between the wild and the cultivated. How to improve quality becomes key points of Chinese medicine resource. The leaves of Scutellaria baicalensis were sprayed with H₂O₂, the activities of superoxide dismutase (SOD) and catalase (CAT) changed little, but there had been a marked decrease of peroxidase (POD) and ascorbic oxidase (APX), which showed that the antioxidase system declined. Meanwhile, H₂O₂, as enhanced the expression of phenylalnine ammonialyase (PAL) and β-glucuronidase (GUS) as well as activity of PAL, promoted the biosynthesis and biotransformation of flavonoids. At the day 2 after treated, H₂O₂ of 0.004 μmol·L⁻¹ the contents of the baicalin and the wogonoside decreased slightly, but the contents of the baicalein and the wogonin increased significantly, the baicalein from 0.094% to 0.324%, the wogonin from 0.060% to 0.110%, i. e. increased 246% and 83.3%, respectively.
Ascorbate Oxidase
;
metabolism
;
Catalase
;
metabolism
;
Drugs, Chinese Herbal
;
chemistry
;
Flavanones
;
analysis
;
Flavonoids
;
analysis
;
Glucosides
;
analysis
;
Glucuronidase
;
metabolism
;
Hydrogen Peroxide
;
Peroxidase
;
metabolism
;
Phenylalanine Ammonia-Lyase
;
metabolism
;
Scutellaria baicalensis
;
metabolism
;
Secondary Metabolism
;
Superoxide Dismutase
;
metabolism
9.Brazilin and Caesalpinia sappan L. extract protect epidermal keratinocytes from oxidative stress by inducing the expression of GPX7.
Hyung Seo HWANG ; Joong Hyun SHIM
Chinese Journal of Natural Medicines (English Ed.) 2018;16(3):203-209
Caesalpinia sappan L., belonging to the family Leguminosae, is a medicinal plant that is distributed in Southeast Asia. The dried heartwood of this plant is used as a traditional ingredient of food, red dyes, and folk medicines in the treatment of diarrhea, dysentery, tuberculosis, skin infections, and inflammation. Brazilin is the major active compound, which has exhibited various pharmacological effects, including anti-platelet activity, anti-hepatotoxicity, induction of immunological tolerance, and anti-inflammatory and antioxidant activities. The present study aimed to evaluate the antioxidant activity and expression of antioxidant enzymes of C. sappan L. extract and its major compound, brazilin, in human epidermal keratinocytes exposed to UVA irradiation. Our results indicated that C. sappan L. extract reduced UVA-induced HO production via GPX7 activation. Moreover, brazilin exhibited antioxidant effects that were similar to those of C. sappan L. via glutathione peroxidase 7 (GPX7), suggesting that C. sappan L. extract and its natural compound represent potential treatments for oxidative stress-induced photoaging of skin.
Antioxidants
;
pharmacology
;
Benzopyrans
;
pharmacology
;
Caesalpinia
;
chemistry
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Keratinocytes
;
cytology
;
drug effects
;
enzymology
;
radiation effects
;
Oxidative Stress
;
drug effects
;
radiation effects
;
Peroxidases
;
genetics
;
metabolism
;
Plant Extracts
;
pharmacology
;
Protective Agents
;
pharmacology
;
Ultraviolet Rays
10.An oriental melon 9-lipoxygenase gene CmLOX09 response to stresses, hormones, and signal substances.
Li-Jun JU ; Chong ZHANG ; Jing-Jing LIAO ; Yue-Peng LI ; Hong-Yan QI
Journal of Zhejiang University. Science. B 2018;19(8):596-609
In plants, lipoxygenases (LOXs) play a crucial role in biotic and abiotic stresses. In our previous study, five 13-LOX genes of oriental melon were regulated by abiotic stress but it is unclear whether the 9-LOX is involved in biotic and abiotic stresses. The promoter analysis revealed that CmLOX09 (type of 9-LOX) has hormone elements, signal substances, and stress elements. We analyzed the expression of CmLOX09 and its downstream genes-CmHPL and CmAOS-in the leaves of four-leaf stage seedlings of the oriental melon cultivar "Yumeiren" under wound, hormone, and signal substances. CmLOX09, CmHPL, and CmAOS were all induced by wounding. CmLOX09 was induced by auxin (indole acetic acid, IAA) and gibberellins (GA3); however, CmHPL and CmAOS showed differential responses to IAA and GA3. CmLOX09, CmHPL, and CmAOS were all induced by hydrogen peroxide (H2O2) and methyl jasmonate (MeJA), while being inhibited by abscisic acid (ABA) and salicylic acid (SA). CmLOX09, CmHPL, and CmAOS were all induced by the powdery mildew pathogen Podosphaera xanthii. The content of 2-hexynol and 2-hexenal in leaves after MeJA treatment was significantly higher than that in the control. After infection with P. xanthii, the diseased leaves of the oriental melon were divided into four levels-levels 1, 2, 3, and 4. The content of jasmonic acid (JA) in the leaves of levels 1 and 3 was significantly higher than that in the level 0 leaves. In summary, the results suggested that CmLOX09 might play a positive role in the response to MeJA through the hydroperoxide lyase (HPL) pathway to produce C6 alcohols and aldehydes, and in the response to P. xanthii through the allene oxide synthase (AOS) pathway to form JA.
Abscisic Acid
;
Acetates/chemistry*
;
Aldehyde-Lyases/metabolism*
;
Aldehydes/chemistry*
;
Cucurbitaceae/genetics*
;
Cyclopentanes/chemistry*
;
Cytochrome P-450 Enzyme System/metabolism*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Hormones/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Intramolecular Oxidoreductases/metabolism*
;
Lipoxygenase/metabolism*
;
Oxylipins/chemistry*
;
Plant Leaves/genetics*
;
Plant Proteins/metabolism*
;
Promoter Regions, Genetic
;
Salicylic Acid/chemistry*
;
Seedlings/metabolism*
;
Signal Transduction
;
Stress, Physiological
;
Transgenes

Result Analysis
Print
Save
E-mail