1.Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery
Min-Jae KIM ; Young Ju LEE ; Zahid HUSSAIN ; Hyojin PARK
Gut and Liver 2025;19(2):207-218
Background/Aims:
We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI.
Methods:
Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure.The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay.
Results:
The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups.
Conclusions
Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
2.Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery
Min-Jae KIM ; Young Ju LEE ; Zahid HUSSAIN ; Hyojin PARK
Gut and Liver 2025;19(2):207-218
Background/Aims:
We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI.
Methods:
Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure.The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay.
Results:
The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups.
Conclusions
Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
3.Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery
Min-Jae KIM ; Young Ju LEE ; Zahid HUSSAIN ; Hyojin PARK
Gut and Liver 2025;19(2):207-218
Background/Aims:
We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI.
Methods:
Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure.The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay.
Results:
The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups.
Conclusions
Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
4.Effect of Probiotics on Improving Intestinal Mucosal Permeability and Inflammation after Surgery
Min-Jae KIM ; Young Ju LEE ; Zahid HUSSAIN ; Hyojin PARK
Gut and Liver 2025;19(2):207-218
Background/Aims:
We explored the mechanisms underlying the improvement of postoperative ileus (POI) following probiotic pretreatment. We assessed intestinal permeability, inflammation, tight junction (TJ) protein expression in the gut epithelium, and plasma interleukin (IL)-17 levels in a guinea pig model of POI.
Methods:
Guinea pigs were divided into control, POI, and probiotic groups. The POI and probiotic groups underwent surgery, but the probiotic group received probiotics before the procedure.The ileum and proximal colon were harvested. Intestinal permeability was measured via horseradish peroxidase permeability. Inflammation was evaluated via leukocyte count in the intestinal wall muscle layer, and calprotectin expression in each intestinal wall layer was analyzed immunohistochemically. TJ proteins were analyzed using immunohistochemical staining, and plasma IL-17 levels were measured using an enzyme-linked immunosorbent assay.
Results:
The POI group exhibited increased intestinal permeability and inflammation, whereas probiotic pretreatment reduced the extent of these POI-induced changes. Probiotics restored the expression of TJ proteins occludin and zonula occludens-1 in the proximal colon, which were increased in the POI group. Calprotectin expression significantly increased in the muscle layer of the POI group and was downregulated in the probiotic group; however, no distinct differences were observed between the mucosal and submucosal layers. Plasma IL-17 levels did not significantly differ among the groups.
Conclusions
Probiotic pretreatment may relieve POI by reducing intestinal permeability and inflammation and TJ protein expression in the gut epithelium. These findings suggest a potential therapeutic approach for POI management.
5.Autonomic Nervous System Dysfunction in Achalasia
Min-Jae KIM ; Eunha CHO ; Zahid HUSSAIN ; Hyojin PARK
The Korean Journal of Gastroenterology 2024;83(2):54-60
Background/Aims:
Achalasia is an esophageal motility disorder characterized by dysphagia and noncardiac chest pain. Impairment of vagal function has been reported in achalasia. This study evaluated autonomic nervous system (ANS) dysfunctions in patients with achalasia to establish a correlation between an ANS dysfunction and the clinical symptoms of achalasia.
Methods:
Nineteen patients with achalasia (six males/13 females; mean age, 47.1±16.3 years) and 10 healthy controls (four males/six females; 34.8±10.7 years) were enrolled prospectively at Gangnam Severance Hospital between June 2013 and June 2014. All patients completed a questionnaire on ANS dysfunction symptoms and underwent a heart rate variability (HRV) test.
Results:
ANS dysfunction symptoms were present in 13 patients with achalasia (69%) and three controls (30%). The ANS dysfunction score was significantly higher in patients with achalasia than in the controls (p=0.035). There were no significant differences in the standard deviation of all normal R-R intervals, high frequency (HF), low frequency (LF), and LF/HF ratio in the HRV test. In subgroup analysis comparing female achalasia patients with controls, the cardiac activity was significantly higher in the female achalasia patients than in the controls (p=0.036). The cardiac activity (p=0.004) and endurance to stress (p=0.004) were significantly higher in the achalasia patients with ANS dysfunction symptoms than the achalasia patients without ANS dysfunction symptoms.
Conclusions
ANS dysfunction symptoms are common in patients with achalasia. Female achalasia patients and those with ANS dysfunction symptoms showed increased cardiac activity. Hence, more attention should be paid to cardiac overload in achalasia patients who are female or have ANS dysfunction symptoms.
6.Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options
Journal of Neurogastroenterology and Motility 2022;28(4):517-530
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF ( p CRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
7.Altered Intestinal Permeability and Drug Repositioning in a Post-operative Ileus Guinea Pig Model
Young Min KIM ; Zahid HUSSAIN ; Young Ju LEE ; Hyojin PARK
Journal of Neurogastroenterology and Motility 2021;27(4):639-649
Background/Aims:
The aim of this study is to identify the alteration in intestinal permeability with regard to the development of post-operative ileus (POI).Moreover, we investigated drug repositioning in the treatment of POI.
Methods:
An experimental POI model was developed using guinea pigs. To measure intestinal permeability, harvested intestinal membranes of the ileum and proximal colon was used in an Ussing chamber. To identify the mechanisms associated with altered permeability, we measured leukocyte count and expression of calprotectin, claudin-1, claudin-2, and mast cell tryptase. We compared control, POI, and drug groups (mosapride [0.3 mg/kg and 1 mg/kg, orally], glutamine [500 mg/kg, orally], or ketotifen [1 mg/kg, orally] with regard to these parameters.
Results:
Increased permeability after surgery significantly decreased after administration of mosapride, glutamine, or ketotifen. Leukocyte counts increased in the POI group and decreased significantly after administration of mosapride (0.3 mg/kg) in the ileum, and mosapride (0.3 mg/kg and 1 mg/kg), glutamine, or ketotifen in the proximal colon. Increased expression of calprotectin after surgery decreased after administration of mosapride (0.3 mg/kg), glutamine, or ketotifen in the ileum and proximal colon, and mosapride (1 mg/kg) in the ileum. The expression of claudin-1 decreased significantly and that of claudin-2 increased after operation. After administration of glutamine, the expression of both proteins was restored. Finally, mast cell tryptase levels increased in the POI group and decreased significantly after administration of ketotifen.
Conclusions
The alteration in intestinal permeability is one of the factors involved in the pathogenesis of POI. We repositioned 3 drugs (mosapride, glutamine, and ketotifen) as novel therapeutic agents for POI.
8.Altered Intestinal Permeability and Drug Repositioning in a Post-operative Ileus Guinea Pig Model
Young Min KIM ; Zahid HUSSAIN ; Young Ju LEE ; Hyojin PARK
Journal of Neurogastroenterology and Motility 2021;27(4):639-649
Background/Aims:
The aim of this study is to identify the alteration in intestinal permeability with regard to the development of post-operative ileus (POI).Moreover, we investigated drug repositioning in the treatment of POI.
Methods:
An experimental POI model was developed using guinea pigs. To measure intestinal permeability, harvested intestinal membranes of the ileum and proximal colon was used in an Ussing chamber. To identify the mechanisms associated with altered permeability, we measured leukocyte count and expression of calprotectin, claudin-1, claudin-2, and mast cell tryptase. We compared control, POI, and drug groups (mosapride [0.3 mg/kg and 1 mg/kg, orally], glutamine [500 mg/kg, orally], or ketotifen [1 mg/kg, orally] with regard to these parameters.
Results:
Increased permeability after surgery significantly decreased after administration of mosapride, glutamine, or ketotifen. Leukocyte counts increased in the POI group and decreased significantly after administration of mosapride (0.3 mg/kg) in the ileum, and mosapride (0.3 mg/kg and 1 mg/kg), glutamine, or ketotifen in the proximal colon. Increased expression of calprotectin after surgery decreased after administration of mosapride (0.3 mg/kg), glutamine, or ketotifen in the ileum and proximal colon, and mosapride (1 mg/kg) in the ileum. The expression of claudin-1 decreased significantly and that of claudin-2 increased after operation. After administration of glutamine, the expression of both proteins was restored. Finally, mast cell tryptase levels increased in the POI group and decreased significantly after administration of ketotifen.
Conclusions
The alteration in intestinal permeability is one of the factors involved in the pathogenesis of POI. We repositioned 3 drugs (mosapride, glutamine, and ketotifen) as novel therapeutic agents for POI.
9.Synergistic effects of combined therapy of curcumin and Fructus Ligustri Lucidi for treatment of osteoporosis: cellular and molecular evidence of enhanced bone formation.
Syed Nasir Abbas BUKHARI ; Fahad HUSSAIN ; Hnin Ei THU ; Zahid HUSSAIN
Journal of Integrative Medicine 2019;17(1):38-45
OBJECTIVE:
The present study explored the effects of the combined herbal therapy consisting of curcumin (CUR) and Fructus Ligustri Lucidi (FLL) on aspects of bone regeneration.
METHODS:
Prior to analyzing the ability of this novel combined herbal therapy to promote aspects of bone regeneration, its cytotoxicity was determined using MC3T3-E1 cells (pre-osteoblast model). Cell proliferation was evaluated using phase-contrast microscopy and cell differentiation was estimated using alkaline phosphatase activity. The effect of the combined herbal therapy (CUR + FLL) was also assessed in terms of mineralization in the extracellular matrix (ECM) of cultured cells. Further, to explore the molecular mechanisms of bone formation, time-dependent expression of bone-regulating protein biomarkers was also evaluated.
RESULTS:
Combined herbal therapy (CUR + FLL) significantly upregulated the viability, proliferation and differentiation of MC3T3-E1 cells compared to the monotherapy of CUR or FLL. The magnitude of ECM mineralization (calcium deposition) was also higher in MC3T3-E1 cells treated with combined therapy. The time-dependent expression of bone-forming protein biomarkers revealed that the tendency of expression of these bone-regulating proteins was remarkably higher in cells treated with combined therapy.
CONCLUSION
The co-administration of CUR and FLL had superior promotion of elements of bone regeneration in cultured cells, thus could be a promising alternative herbal therapy for the management of bone erosive disorders such as osteoporosis.
10.Inflammation, Impaired Motility, and Permeability in a Guinea Pig Model of Postoperative Ileus
Yoo Jin LEE ; Zahid HUSSAIN ; Cheal Wung HUH ; Young Ju LEE ; Hyojin PARK
Journal of Neurogastroenterology and Motility 2018;24(1):147-158
BACKGROUND/AIMS: Postoperative ileus (POI) is characterized by impaired propulsive function of the gastrointestinal tract after surgery. Although inflammation is considered to be an important pathogenesis of POI, significant data are lacking. We aim to correlate the recovery time of postoperative dysmotility with that of inflammation and mucosal permeability. METHODS: An experimental POI model of guinea pig was used. Contractile activity of the circular muscle of the stomach, jejunum, ileum, and proximal colon was measured through a tissue bath study. Inflammatory cells were counted, and the expression of calprotectin and tryptase were analyzed. The expression of protease-activated receptor 2 (PAR-2), claudin-1, and claudin-2 were analyzed with immunofluorescence. RESULTS: The small bowel and colon showed decreased contractile amplitude in the POI groups compared to control. In contrast to the colon, the contractile amplitude of the small bowel significantly recovered in the POI group at 6 hours after the operation compared to the control group. Inflammation was highly significant in the POI groups compared to the control and sham groups, especially in the colon. Immunofluorescence showed increased PAR-2 expression in the POI groups compared to sham. The decreased claudin-1 expression and increased claudin-2 expression may suggest increased mucosal permeability of the small bowel and colon in the POI groups. CONCLUSIONS: Increased inflammation and mucosal permeability may play an important role in the differential recovery stages in POI. These data may provide further insights into the pathophysiology and potential new therapeutic prospects of POI.
Animals
;
Baths
;
Claudin-1
;
Claudin-2
;
Colon
;
Fluorescent Antibody Technique
;
Gastrointestinal Tract
;
Guinea Pigs
;
Guinea
;
Ileum
;
Ileus
;
Inflammation
;
Jejunum
;
Leukocyte L1 Antigen Complex
;
Permeability
;
Receptor, PAR-2
;
Stomach
;
Tryptases

Result Analysis
Print
Save
E-mail