2.CRISPR-Based Genome-Editing Tools for Huntington's Disease Research and Therapy.
Yiyang QIN ; Shihua LI ; Xiao-Jiang LI ; Su YANG
Neuroscience Bulletin 2022;38(11):1397-1408
Huntington's disease (HD) is an autosomal dominantly-inherited neurodegenerative disease, which is caused by CAG trinucleotide expansion in exon 1 of the Huntingtin (HTT) gene. Although HD is a rare disease, its monogenic nature makes it an ideal model in which to understand pathogenic mechanisms and to develop therapeutic strategies for neurodegenerative diseases. Clustered regularly-interspaced short palindromic repeats (CRISPR) is the latest technology for genome editing. Being simple to use and highly efficient, CRISPR-based genome-editing tools are rapidly gaining popularity in biomedical research and opening up new avenues for disease treatment. Here, we review the development of CRISPR-based genome-editing tools and their applications in HD research to offer a translational perspective on advancing the genome-editing technology to HD treatment.
Humans
;
Gene Editing
;
Huntington Disease/therapy*
;
CRISPR-Cas Systems/genetics*
;
Neurodegenerative Diseases
3.Genetic testing and prenatal diagnosis of two pedigrees affected with Huntington disease.
Yilin REN ; Peng DAI ; Chen CHEN ; Huikun DUAN ; Xiangdong KONG
Chinese Journal of Medical Genetics 2021;38(5):446-449
OBJECTIVE:
To explore the genetic basis for two Chinese pedigrees affected with Huntington disease and provide prenatal diagnosis for them.
METHODS:
Peripheral venous blood samples were collected from the probands. PCR and capillary gel electrophoresis were used to determine the number of CAG repeats in their IT15 gene. Pre-symptomatic testing was offered to their children and relatives, and prenatal diagnosis was provided to three pregnant women from the two pedigrees.
RESULTS:
The two probands, in addition with three asymptomatic members, were found to have a (CAG)n repeat number greater than 40. Upon prenatal diagnosis, the numbers of CAG repeats in two fetuses from pedigree 1 were determined as (16, 19) and (18, 19), both were within the normal range. A fetus from pedigree 2 was found to have a CAG repeat number of (15, 41), which exceeded the normal range.
CONCLUSION
Genetic testing can facilitate the diagnosis of Huntington disease and avoid further birth of affected children.
Child
;
Female
;
Genetic Testing
;
Humans
;
Huntington Disease/genetics*
;
Nerve Tissue Proteins/genetics*
;
Pedigree
;
Pregnancy
;
Prenatal Diagnosis
4.Report on the External Quality Assessment Scheme for Molecular Diagnostics in Korea (2017).
Man Jin KIM ; Mi Hye YOON ; Ji Yun SONG ; Sung Im CHO ; Sung Sup PARK ; Moon Woo SEONG
Journal of Laboratory Medicine and Quality Assurance 2018;40(4):199-210
Quality control for genetic analysis has become more important with a drastic increase in testing volume and clinical demands. The molecular diagnostics division of the Korean Association of Quality Assurance for Clinical Laboratory conducted two trials in 2017 on the basis of molecular diagnostics surveys, involving 53 laboratories. The molecular diagnostics surveys included 37 tests: gene rearrangement tests for leukemia (BCR-ABL1, PML-RARA, AML1-ETO, and TEL-AML1), genetic tests for Janus kinase 2, FMS-like tyrosine kinase 3-internal tandem duplication, FMS-like tyrosine kinase 3-tyrosine kinase domain, nucleophosmin, cancer-associated genes (KRAS, EGFR, KIT, and BRAF), hereditary breast and ovarian cancer genes (BRCA1 and BRCA2), Li-Fraumeni syndrome (TP53), Wilson disease (ATP7B), achondroplasia (FGFR3), hearing loss and deafness (GJB2), Avellino (TGFBI), multiple endocrine neoplasia 2 (RET), Huntington disease, spinocerebellar ataxia, spinal and bulbar muscular atrophy, mitochondrial encephalopathy with lactic acidosis and stroke-like episodes, myoclonic epilepsy ragged red fibre, Leber hereditary optic neuropathy, Prader-raderd Angelman syndrome, Duchenne muscular dystrophy, spinal muscular atrophy, fragile X syndrome, apolipoprotein E genotyping, methylenetetrahydrofolate reductase genotyping, and ABO genotyping. Molecular genetic surveys revealed excellent results for most participants. The external quality assessment program for genetic analysis in 2017 proved useful for continuous education and the evaluation of quality improvement.
Achondroplasia
;
Acidosis, Lactic
;
Angelman Syndrome
;
Apolipoproteins
;
Brain Diseases
;
Breast
;
Deafness
;
Education
;
Epilepsies, Myoclonic
;
Fragile X Syndrome
;
Gene Rearrangement
;
Hearing Loss
;
Hepatolenticular Degeneration
;
Huntington Disease
;
Janus Kinase 2
;
Korea*
;
Laboratory Proficiency Testing
;
Leukemia
;
Li-Fraumeni Syndrome
;
Methylenetetrahydrofolate Reductase (NADPH2)
;
Molecular Biology
;
Multiple Endocrine Neoplasia
;
Muscular Atrophy, Spinal
;
Muscular Disorders, Atrophic
;
Muscular Dystrophy, Duchenne
;
Optic Atrophy, Hereditary, Leber
;
Ovarian Neoplasms
;
Pathology, Molecular*
;
Phosphotransferases
;
Quality Control
;
Quality Improvement
;
Spinocerebellar Ataxias
;
Vascular Endothelial Growth Factor Receptor-1
5.Synthetic 3′,4′-Dihydroxyflavone Exerts Anti-Neuroinflammatory Effects in BV2 Microglia and a Mouse Model.
Namkwon KIM ; Hyung Seok YOO ; Yeon Joo JU ; Myung Sook OH ; Kyung Tae LEE ; Kyung Soo INN ; Nam Jung KIM ; Jong Kil LEE
Biomolecules & Therapeutics 2018;26(2):210-217
Neuroinflammation is an immune response within the central nervous system against various proinflammatory stimuli. Abnormal activation of this response contributes to neurodegenerative diseases such as Parkinson disease, Alzheimer’s disease, and Huntington disease. Therefore, pharmacologic modulation of abnormal neuroinflammation is thought to be a promising approach to amelioration of neurodegenerative diseases. In this study, we evaluated the synthetic flavone derivative 3′,4′-dihydroxyflavone, investigating its anti-neuroinflammatory activity in BV2 microglial cells and in a mouse model. In BV2 microglial cells, 3′,4′-dihydroxyflavone successfully inhibited production of chemokines such as nitric oxide and prostaglandin E2 and proinflammatory cytokines such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 in BV2 microglia. It also inhibited phosphorylation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation. This indicates that the anti-inflammatory activities of 3′,4′-dihydroxyflavone might be related to suppression of the proinflammatory MAPK and NF-κB signaling pathways. Similar anti-neuroinflammatory activities of the compound were observed in the mouse model. These findings suggest that 3′,4′-dihydroxyflavone is a potential drug candidate for the treatment of microglia-related neuroinflammatory diseases.
Animals
;
Central Nervous System
;
Chemokines
;
Cytokines
;
Dinoprostone
;
Huntington Disease
;
Interleukin-1beta
;
Interleukin-6
;
Mice*
;
Microglia*
;
Neurodegenerative Diseases
;
Nitric Oxide
;
Parkinson Disease
;
Phosphorylation
;
Protein Kinases
;
Tumor Necrosis Factor-alpha
6.Cortical Axonal Secretion of BDNF in the Striatum Is Disrupted in the Mutant-huntingtin Knock-in Mouse Model of Huntington's Disease.
Experimental Neurobiology 2018;27(3):217-225
Deficient BDNF signaling is known to be involved in neurodegenerative diseases such as Huntington's disease (HD). Mutant huntingtin (mhtt)-mediated disruption of either BDNF transcription or transport is thought to be a factor contributing to striatal atrophy in the HD brain. Whether and how activity-dependent BDNF secretion is affected by the mhtt remains unclear. In the present study, I provide evidence for differential effects of the mhtt on cortical BDNF secretion in the striatum during HD progression. By two-photon imaging of fluorescent BDNF sensor (BDNF-pHluorin and -EGFP) in acute striatal slices of HD knock-in model mice, I found deficient cortical BDNF secretion regardless of the HD onset, but antisense oligonucleotide (ASO)-mediated reduction of htts only rescues BDNF secretion in the early HD brain before the disease onset. Although secretion modes of individual BDNF-containing vesicle were not altered in the pre-symptomatic brain, the full-fusion and partial-fusion modes of BDNF-containing vesicles were significantly altered after the onset of HD symptoms. Thus, besides abnormal BDNF transcription and transport, our results suggest that mhtt-mediated alteration in activity-dependent BDNF secretion at corticostriatal synapses also contributes to the development of HD.
Animals
;
Atrophy
;
Axons*
;
Brain
;
Brain-Derived Neurotrophic Factor*
;
Huntington Disease*
;
Mice*
;
Neurodegenerative Diseases
;
Synapses
8.Cell-to-cell Transmission of Polyglutamine Aggregates in C. elegans.
Dong Kyu KIM ; Kyu Won CHO ; Woo Jung AHN ; Dayana PEREZ-ACUÑA ; Hyunsu JEONG ; He Jin LEE ; Seung Jae LEE
Experimental Neurobiology 2017;26(6):321-328
Huntington disease (HD) is an inherited neurodegenerative disorder characterized by motor and cognitive dysfunction caused by expansion of polyglutamine (polyQ) repeat in exon 1 of huntingtin (HTT). In patients, the number of glutamine residues in polyQ tracts are over 35, and it is correlated with age of onset, severity, and disease progression. Expansion of polyQ increases the propensity for HTT protein aggregation, process known to be implicated in neurodegeneration. These pathological aggregates can be transmitted from neuron to another neuron, and this process may explain the pathological spreading of polyQ aggregates. Here, we developed an in vivo model for studying transmission of polyQ aggregates in a highly quantitative manner in real time. HTT exon 1 with expanded polyQ was fused with either N-terminal or C-terminal fragments of Venus fluorescence protein and expressed in pharyngeal muscles and associated neurons, respectively, of C. elegans. Transmission of polyQ proteins was detected using bimolecular fluorescence complementation (BiFC). Mutant polyQ (Q97) was transmitted much more efficiently than wild type polyQ (Q25) and forms numerous inclusion bodies as well. The transmission of Q97 was gradually increased with aging of animal. The animals with polyQ transmission exhibited degenerative phenotypes, such as nerve degeneration, impaired pharyngeal pumping behavior, and reduced life span. The C. elegans model presented here would be a useful in vivo model system for the study of polyQ aggregate propagation and might be applied to the screening of genetic and chemical modifiers of the propagation.
Age of Onset
;
Aging
;
Animals
;
Complement System Proteins
;
Disease Progression
;
Exons
;
Fluorescence
;
Glutamine
;
Humans
;
Huntington Disease
;
Inclusion Bodies
;
Mass Screening
;
Nerve Degeneration
;
Neurodegenerative Diseases
;
Neurons
;
Pharyngeal Muscles
;
Phenotype
;
Venus
9.Hopping from One Cell to Another: Huntington's Disease Propagates.
Experimental Neurobiology 2017;26(6):319-320
No abstract available.
Huntington Disease*
10.Quantitative Gait Analysis in Patients with Huntington's Disease.
Seon Jong PYO ; Hanjun KIM ; Il Soo KIM ; Young Min PARK ; Mi Jung KIM ; Hye Mi LEE ; Seong Beom KOH
Journal of Movement Disorders 2017;10(3):140-144
OBJECTIVE: Gait disturbance is the main factor contributing to a negative impact on quality of life in patients with Huntington’s disease (HD). Understanding gait features in patients with HD is essential for planning a successful gait strategy. The aim of this study was to investigate temporospatial gait parameters in patients with HD compared with healthy controls. METHODS: We investigated 7 patients with HD. Diagnosis was confirmed by genetic analysis, and patients were evaluated with the Unified Huntington’s Disease Rating Scale (UHDRS). Gait features were assessed with a gait analyzer. We compared the results of patients with HD to those of 7 age- and sex-matched normal controls. RESULTS: Step length and stride length were decreased and base of support was increased in the HD group compared to the control group. In addition, coefficients of variability for step and stride length were increased in the HD group. The HD group showed slower walking velocity, an increased stance/swing phase in the gait cycle and a decreased proportion of single support time compared to the control group. Cadence did not differ significantly between groups. Among the UHDRS subscores, total motor score and total behavior score were positively correlated with step length, and total behavior score was positively correlated with walking velocity in patients with HD. CONCLUSION: Increased variability in step and stride length, slower walking velocity, increased stance phase, and decreased swing phase and single support time with preserved cadence suggest that HD gait patterns are slow, ataxic and ineffective. This study suggests that quantitative gait analysis is needed to assess gait problems in HD.
Diagnosis
;
Gait*
;
Humans
;
Huntington Disease*
;
Quality of Life
;
Walking

Result Analysis
Print
Save
E-mail